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S7-1.  Fixed Versus Random Factors in the Analysis of Variance 
In chapter 3, we present the standard analysis of variance (ANOVA) for a single-factor 
experiment, assuming that the factor is a fixed factor.  By a fixed factor, we mean that all 
levels of the factor of interest were studied in the experiment.  Sometimes the levels of a 
factor are selected at random from a large (theoretically infinite) population of factor 
levels.  This leads to a random effects ANOVA model. 

In the single factor case, there are only modest differences between the fixed and random 
models.  The model for a random effects experiment is still written as  

 ij i ijy µ τ ε= + +  

but now the treatment effects iτ are random variables, because the treatment levels 
actually used in the experiment have been chosen at random.  The population of 
treatments is assumed to be normally and independently distributed with mean zero and 
variance 2

τσ .  Note that the variance of an observation is   
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We often call 2  and τ

2σ σ variance components, and the random model is sometimes 
called the components of variance model. All of the computations in the random model 
are the same as in the fixed effects model, but since we are studying an entire population 
of treatments, it doesn’t make much sense to formulate hypotheses about the individual 
factor levels selected in the experiment.  Instead, we test the following hypotheses about 
the variance of the treatment effects: 
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The test statistic for these hypotheses is the usual F-ratio, F = MSTreatments/MSE.  If the 
null hypothesis is not rejected, there is no variability in the population of treatments, 
while if the null hypothesis is rejected, there is significant variability among the 
treatments in the entire population that was sampled.  Notice that the conclusions of the 
ANOVA extend to the entire population of treatments.  

The expected mean squares in the random model are different from their fixed effects 
model counterparts.  It can be shown that  
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Frequently, the objective of an experiment involving random factors is to estimate the 
variance components.  A logical way to do this is to equate the expected values of the 
mean squares to their observed values and solve the resulting equations.  This leads to  
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A typical application of experiments where some of the factors are random is in a 
measurement systems capability study, as discussed in Chapter 7.  The model used there 
is a factorial model, so the analysis and the expected mean squares are somewhat more 
complicated than in the single factor model considered here. 

 

S7-2.  Analysis of Variance Methods for Measurement Systems Capability Studies 

In Chapter 7 an analysis of variance model approach to measurement systems studies is 
presented. This method replaces the tabular approach that was presented along with the 
ANOVA method in earlier editions of the book.  The tabular approach is a relatively 
simple method, but it is not the most general or efficient approach to conducting gage 
studies.  Gauge and measurement systems studies are designed experiments, and often 
we find that the gauge study must be conducted using an experimental design that does 
not nicely fit into the tabular analysis scheme.  For example, suppose that the operators 
used with each instrument (or gauge) are different because the instruments are in 
different physical locations.  Then operators are nested within instruments, and the 
experiment has been conducted as a nested design.  

As another example, suppose that the operators are not selected at random, because the 
specific operators used in the study are the only ones that actually perform the 
measurements.   This is a mixed model experiment, and the random effects approach that 
the tabular method is based on is inappropriate.  The random effects model analysis of 
variance approach in the text is also inappropriate for this situation.  Dolezal, Burdick, 
and Birch (1998), Montgomery (2001), and Burdick, Borror, and Montgomery (2003) 
discuss the mixed model analysis of variance for gauge R & R studies. 

The tabular approach does not lend itself to constructing confidence intervals on the 
variance components or functions of the variance components of interest. For that reason 
we do not recommend the tabular approach for general use.  There are three general 
approaches to constructing these confidence intervals: (1) the Satterthwaite method, (2) 
the maximum likelihood large-sample method, and (3) the modified large sample 
method.  Montgomery (2001) gives an overview of these different methods.  Of the three 
approaches, there is good evidence that the modified large sample approach is the best in 
the sense that it produces confidence intervals that are closest to the stated level of 
confidence. 

Hamada and Weerahandi (2000) show how generalized inference can be applied to the 
problem of determining confidence intervals in measurement systems capability studies.  
The technique is somewhat more involved that the three methods referenced above.  
Either numerical integration or simulation must be used to find the desired confidence 
intervals.  Burdick, Borror, and Montgomery (2003) discuss this technique.   

While the tabular method should be abandoned, the control charting aspect of 
measurement systems capability studies should be used more consistently.  All too often 
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a measurement study is conducted and analyzed via some computer program without 
adequate graphical analysis of the data.  Furthermore, some of the advice in various 
quality standards and reference sources regarding these studies is just not very good and 
can produce results of questionable validity.  The most reliable measure of gauge 
capability is the probability that parts are misclassified.  
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