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Análise Fatorial

Análise Fatorial

• Objetivo:
√ Descrever as relações de covariância entre muitas

variáveis em termos de poucas quantidades aleatórias
subjacentes e não observáveis

• Motivação:
√ Variáveis de um grupo altamente correlacionadas entre

si, mas com pequenas correlações de outros grupos

√ É concebível que cada grupo de variáveis represente
um fator (ou construto) que seja o responsável pelas
correlações observadas
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• Análise fatorial:
√ Pode ser considerada uma extensão da Análise de

Componentes Principais
– Ambas são tentativas de aproximar S.

– A aproximação baseada em Análise Fatorial é mais
elaborada

√ Questão principal:
– Dados são consistentes com a estrutura prescrita?
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• Análise Fatorial Exploratória:
√ Busca encontrar os fatores subjacentes às variáveis

originais amostradas

√ Em geral, efetuada quando não se tem noção clara da
quantidade de fatores do modelo e nem do que
representam

• Análise Fatorial Confirmatória:
√ Tem-se em mãos um modelo fatorial pré-

especificado (modelo hipotético) e deseja-se verificar
se é aplicável ou consistente com os dados amostrais
de que dispõe
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Modelo Fatorial Ortogonal via Matriz de 
Correlações

• Seja o vetor aleatório

com vetor de médiasµµµµ, matriz de covariâncias éΣΣΣΣ, e
matriz de correlaçõesP.

• Sejam as variáveis originais padronizadas:

√ P é a matriz de covariâncias do vetor aleatórioZ,
cujos componentes são as variáveis padronizadas
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• Modelo Fatorial Ortogonal
√ Construído via a matriz de correlação populacional

√ Relaciona linearmente as variáveis padronizadas e os
m fatores comuns (que são desconhecidos)

√ Fatores são variáveis independentes
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• Equações do modelo:

√ Em notação matricial:
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• Modelo fatorial:

√ F: vetor aleatório contendo m fatores
– Essas variáveis latentes precisam ser identificadas

√ εεεε: vetor dos erros aleatórios
– Erros de medida e variação de Zi que não é explicada pelos

fatores comuns

√ L: matriz de loadings fatoriais
– l ij: representa o grau de relacionamento entre Zi e Fj.

√ O modelo de análise fatorial assume que as variáveis
Zi estão relacionadas linearmente com os fatores

– Variáveis originais padronizadas são representadas por
p+m variáveis não observáveis
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Modelo de Fatores Ortogonais

• Suposições:
i. Todos os fatores tem média zero

ii. Todos os fatores são não correlacionados e tem
variância um.

iii. Todos os erros tem média igual a zero

iv. Erros são não correlacionados entre si e não
necessariamente tem a mesma variância
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v. Os vetorese e F são independentes

√ F e εεεε são duas fontes de variação distintas,
relacionadas às variáveis padronizadas Zi, não
havendo qualquer relacionamento entre estas fontes
de informação.

• Assumido o modelo,P pode ser reparametrizada

√ O objetivo é encontrar as matrizesLpxm e ψpxp que
possam representar a matrizPpxp.
– Há matrizes de correlação que não podem ser decompostas

na forma do modelo
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• Consequências da decomposição fatorial deP:
√ Variância de Zi é decomposta em duas partes:

– hi
2: comunalidade
� variabilidade explicada pelos m fatores que é uma fonte comum

de variação de Zi.

– ψi: variância específica
� Parte da variabilidade de Zi associada apenas ao erro aleatório
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√ Covariâncias entre variáveis e fatores

√ Proporção da variância total explicada pelo fator Fj:
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Escolha do Número de Fatores m

• Critério 1:
√ Análise da proporção de variância total relacionada

com cada autovalor

√ Permanecem aqueles autovalores que representam
maiores proporções de variância total

√ m = quantidade de autovalores retidos
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• Critério 2:
√ Permanecem os autovalores maiores que 1

√ m = quantidade de autovalores retidos

√ Ideia básica do critério:
– Mantem no sistema nas novas dimensões pelo menos a

informação da variância de uma variável original
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• Critério 3:
√ Observação do gráfico scree plot

√ Valor de m é igual ao número de autovalores
anteriores ao ‘ponto de salto’.

• Importante:
√ Uma escolha adequada do valor de m deve levar em

consideração a interpretabilidade dos fatores

√ Deve-se observar também o princípio da parcimônia
– Descrição da estrutura de variabilidade do vetor aleatório

Z com um número pequeno de fatores
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• Importante:
√ Modelo fatorial ortogonal só pode ser aplicado

quando as variáveis originais são correlacionadas
entre si

– Caso contrário, cada fator ficará relacionado com apenas
uma variável original
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Métodos de Estimação de L e ψ

• Escolhe-se o valor de m

• Métodos de estimação das matrizesL eψ:
√ Método de componentes principais

– Em geral, utilizado como um análise exploratória dos
dados, em termos dos fatores subjacentes

√ Método de fatores principais
– Refinamento do método das componentes principais

√ Método da máxima verossimilhança
– Indicado apenas quandoZ tem distribuição normal
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Método das Componentes Principais

• MatrizesL eψ serão estimadas por:

√ Aproximação de R
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• Matriz residual:

√ Pode servir como critério de avaliação do modelo
– Seus valores deveriam ser próximos de zero

– Matriz é nula somente quando o valor de m é igual a p

√ Os elementos da diagonal da matriz R são
reproduzidos exatamente pela reprodução do modelo

– O mesmo não ocorre para os outros elementos da matrizR
(covariâncias das variáveis Zi e Zj)
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• Método das componentes principais na
estimação deLL’ e ψ.

√ Representa o quanto cada fator consegue captar da
variabilidade original das variáveis Zi.
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Exemplo 9.3 – Preferência de Consumidor

• Amostra aleatória de consumidores pontuando
atributos de novo produto:
√ Respostas em escala semântica de 7 valores

√ X1: Gosto

√ X2: Preço

√ X3: Aroma

√ X4: Adequado para lanche

√ X5: Fornece muita energia

√ Dados:BD_multivariada.xls/preferencia_consumidor
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• Solução por Componentes Principais:

√ Em geral, uma rotação pode mostrar uma estrutura
simples (interpretação simples)
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• Análise Fatorial da Matriz de Correlações:

LL’ + Ψ reproduz aproximadamente R
^ ^ ^
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• Cálculo Comunalidades e Resíduos – Minitab:

• Matriz de Resíduos:
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Exemplo 9.4 – Ações New York

• Taxas de retorno de 5 ações negociadas na Bolsa
de New York
√ Período: jan/75 a Dez/76

– Observadas 100 semanas

√ Ações:
– Allied Chemical

– du Pont

– Union Carbide

– Exxon

– Texaco

√ Dados:BD_multivariada.xls/acoes_NY
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• Vetor de médias amostral (x)

• Matriz de correlações amostral (S)

_ 
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• Análise Fatorial - Solução por Componentes Principais
√ m = 1

√ m = 2
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• Scores dos fatores • Plot dos fatores
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• Comparação soluções:

√ Componentes obtidos a partir de R

√ % acumulada da solução a dois fatores é bem maior
que a da solução a um fator
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• Matriz de Correlações

• Matriz de Resíduos: R – LL’ -Ψ
√ m = 1

√ m = 2

√ Para m=2 LL’ produz números maiores
(principalmenter45)

^ ^ ^

Análise Multivariada - 2016

38



Análise Multivariada - 2016

Prof. Lupércio F. Bessegato - UFJF 9

• Interpretação:

√ F1: fator de mercado
(condições econômicas gerais)

√ F2: fator industrial
– contrasta ações de indústrias químicas e de óleo e gás

(diferencia setores)

• Em essência, mesma conclusão de ACP (ex. 8.5)
Análise Multivariada - 2016
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Método do Fatores Principais

• Também chamado Método de Componentes
Principais Iterativo

• Idéia básica:
√ Refinar as estimativas deLpxm eψpxp.
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• Procedimento
√ Estimativas iniciais pelo método das componentes

principais

√ Troca dos elementos da diagonal deR pelas
comunalidades estimadas

√ Novas estimações a partir da matrizR*

√ Substituição dos elementos da diagonal principal
pelas comunalidades estimadas

√ Procedimento é repetido até que as diferenças entres
as comunalidades estimadas sejam desprezíveis
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Método da Máxima Verossimilhança

• Só pode ser utilizado quando a forma da
distribuição de probabilidades é conhecida

• Suposição:
√ Vetor aleatórioX tem distribuição normal p-variada

√ Consequência:
– Vetor das variáveis padronizadas é normal p-variado

– Fatores tem distribuição normal multivariada com vetor de
médias zero e matriz de covariânciasIm

– Erros tem distribuição normal p-variada com vetor de
médias zero e matriz de covariânciasψ.
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• A função de verossimilhança é expressa como:

√ A função de verossimilhança depende da matrizes L
e ψ, através da matriz de correlação P.

√ As estimativas de máxima verossimilhança deL eψ
são as matrizesL e ψ que maximizam a função de
verossimilhança.

√ Maximização é feita por métodos numéricos

√ Método mais sofisticado que os métodos de
componentes e fatores principais

– Produz estimativas mais precisas
Análise Multivariada - 2016
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• Cuidados:
√ Está fundamentado na suposição de normalidade

multivariada dos vetoresZ, F e εεεε.
– Apenas a normalidade do vetorZ pode ser investigada a

priori a partir dos dados amostrais

– Fatores e erros são variáveis aleatórias não observáveis
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• Valor de m:
√ Método de máxima verossimilhança

– Mudança de valor de m altera as estimativas dos loadings

√ Método de componentes principais
– Aumento no valor de m não altera os loadings para os fatores

obtidos anteriormente

√ Quando os dados provêm de distribuição normal
multivariada

– Usar método de componentes principais como análise
exploratória dos fatores e estimação do valor provável de m

– Posteriormente, qualidade da solução inicial poderá ser
melhorada pelo uso do método de máxima verossimilhança
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• Dados omissos:
√ São considerados apenas os elementos amostrais com

observações completas
(Análise de componentes principais e análise fatorial)

√ Caso haja muitas observações com dados omissos
em algumas variáveis, deve-se avaliar até que ponto
as análises são válidas.
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Exemplo 9.4 – Ações New York
Solução Máxima Verossimilhança

• Taxas de retorno de 5 ações negociadas na Bolsa
de New York
√ Período: jan/75 a Dez/76

– Observadas 100 semanas

√ Ações:
– Allied Chemical

– du Pont

– Union Carbide

– Exxon

– Texaco

√ Dados:BD_multivariada.xls/acoes_NY
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√ Solução por Máxima Verossimilhança

√ Solução por Componentes Principais
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√ Proporção da variância total amostral padronizada explicada é
maior para a fatoração por componentes principais que por
máxima verossimilhança

– Componentes principais têm a propriedade de otimizar a variância

√ F1: loadingspositivos e grandes
– não tanto quanto por componentes principais

√ F2: sinais consistentes com contraste, mas magnitudes em
alguns casos são menores

– comparação entre Du Pont e Texaco

Análise Multivariada - 2016
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• Matriz de Resíduos: R – LL’ -Ψ
√ Máxima Verossimilhança

√ Componentes Principais

√ Elementos da matriz de resíduos são bem menores
que aqueles obtidos pela análise fatorial por
componentes principais

√ Escolha:
– Solução por máxima verossimilhança

^ ^ ^
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• Importante:
√ Os padrões dosloadings fatoriais iniciais estão

restritos pela condição de unicidade da estimativa de
L’ Ψ L = ∆

√ Padrões fatoriais úteis frequentemente não são
revelados até que os fatores sejam rotacionados

^ ^ ^
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Exemplo 9.6 – Decatlo Olímpico

• Estudo de escores olímpicos de decatlo
(Linden, 1977)

√ 160 observações multivariadas (139 atletas)

√ Período: 1948 a 1976

√ Escores padronizados para cada um dos 10 eventos

√ Análise Fatorial de R por componentes principais e
por máxima verossimilhança

√ Dados:BD_multivariada.xls/decatlo
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√ A distribuição dos scores padronizados são normais
ou aproximadamente normais para cada um dos 10
eventos (Linden, 1977)

√ Variáveis:
X1: 100 m rasos

X2: Salto em distância

X3: Arremesso de peso

X4: Salto em altura

X5: 400 m rasos

X6: 100 m com barreiras

X7: Lançamento de disco

X8: Salto com vara

X9: Lançamento de dardo

X10: 1.500 m

Análise Multivariada - 2016
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• Matriz de Correlações

√ Há correlação potencial entre scores sucessivos de
atletas que concluíram a prova em mais de uma
Olimpíada

– Efetuada análise usando 139 escores representativo de
cada atleta

– Escolheu-se aleatoriamente um dos escores dos atletas que
participaram de mais de uma Olimpíada
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√ Solução por Componentes Principais

√ Solução por Máxima Verossimilhança

Análise Multivariada - 2016

58

• As soluções dos dois métodos são bem
diferentes
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√ Solução por Componentes Principais

– F1: Todos os loadings positivos e grandes (exceto X10)
Habilidade atlética geral

– F2: Contraste entre habilidade de corrida e de arremesso

– F3: Contraste resistência (1500 m) com velocidade (100 m)
� Embora haja loading relativamente alto para salto com vara

– F4: É um mistério neste ponto
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√ Solução por Máxima Verossimilhança

– F1: Loadingsde arremesso de disco e de peso são altos
Fator de força

– F2: Corrida 1500 m única variável comloadingalto
Fator resistência

– F3: Loadings de corrida 100 e 400 m são altos
Fator velocidade

– F4: Não é facilmente identificável
(pode ter algo com habilidade de salto e força nas pernas)

Análise Multivariada - 2016
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• Matriz de Resíduos: R – LL’ -Ψ
√ Componentes Principais

√ Máxima Verossimilhança

^ ^ ^

Análise Multivariada - 2016 63

Rotação dos Fatores

• A matriz de covariânciaΣ é reproduzida pelos
loadings fatoriais obtidos por transformação
ortogonal, da mesma maneira que os loadings
iniciais.
√ Matriz de covariâncias estimada

√ TT’ = T’T = I

√ L*: matriz de loadings rotacionados

√ A matriz de resíduos permanece a mesma (hi
2 e Ψi)

√ Do ponto de vista estatístico é irrelevante obter L ou L*

^

^ ^

^^
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• Comentários:
√ Com a rotação, busca-se uma estrutura mais simples

– loadings originais podem não ter fácil interpretação

√ Ideal: encontrar um padrão de loadings tais que cada
variável carregue-se fortemente em um único fator

(com loadings moderados nos outros fatores)

√ Nem sempre é possível obter esta estrutura mais
simples
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Exemplo 9.8 – Examination Scores

√ Lawley & Maxwell (1971)

√ Avaliações de 220 estudantes do sexo masculino

√ p = 6

√ Dados:BD_multivariada.xls/examination

√ Matriz de correlações:

Análise Multivariada - 2016 66



Análise Multivariada - 2016

Prof. Lupércio F. Bessegato - UFJF 15

• Solução por Máxima Verossimilhança:

√ F1: reflete a resposta global dos estudantes à instrução
fator de inteligência geral

√ F2: não é facilmente identificável
– Fator “Math – nonmath”

– metade positiva, metade negativa (fator bipolar)
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• Plot dos loadings fatoriais:

√ Todos os pontos caem no primeiro quadrante

√ Revelam-se mais claramente 2 clusters das variáveis
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• Rotação horária de 20º:

• Rotação dos loadings:

√ F1*: variáveis matemáticas do teste com loading alto
– (desprezíveis em F*2)

– Fator de habilidade matemática

√ F2*: variáveis de habilidade verbal com loadings altos
– Fator de habilidade verbal
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• Comentários:
√ O fator de inteligência geral está submergido dos

fatores F1* e F2*.

√ As comunalidades não se modificam
(fatores com e sem rotação)
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Critérios de Rotação

• Ideal:
√ Transformação que fizesse os loadings de cadaZi ter

valor grande em apenas um dos fatores e valores
pequenos (ou moderados) nos outros

– Para facilitar a interpretação dos fatores

• Alguns critérios para encontrar matriz ortogonal:
√ Varimax

√ Quartimax

√ Orthomax
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• Qualidade de ajuste
√ A rotação não acrescenta nenhuma melhoria em

relação ao ajuste original
– Matriz residual original não é alterada pela transformação

ortogonal

– Valores estimados de comunalidade e variâncias
específicas permanecem inalterados

• Interpretação:
√ Novos fatores podem ser de mais fácil interpretação

• Quando a solução sem rotação já é de boa
qualidade, não se recomenda rotação
√ Solução rotacionada pode ser pior
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• Critério Varimax:
√ É um dos mais utilizados

√ Em geral, produz soluções mais simples

• Critério Quartimax
√ Tem tendência de gerar fatores, onde todas as

variáveis têm loadings elevados

• Critério Orthomax
√ É uma média ponderada dos dois outros métodos
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Exemplo 9.9 – Preferência Consumidor

• (continuação exemplo 9.3)
√ X1: Gosto

√ X2: Preço

√ X3: Aroma

√ X4: Adequado para lanche

√ X5: fornece muita energia

√ Dados:BD_multivariada.xls/preferencia_consumidor

Análise Multivariada - 2016 77



Análise Multivariada - 2016

Prof. Lupércio F. Bessegato - UFJF 17

• Solução por Componentes Principais:
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• Rotação Varimax:

√ F1*: Fator nutricional
Variável 4 está mais alinhada com F1*

√ F2*: Fator sabor
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• Comparação
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Exemplo 9.10 – Ações New York
Rotação

Continuação Exemplo 9.4

• Taxas de retorno de 5 ações negociadas na Bolsa
de New York
√ Período: jan/75 a Dez/76

– Observadas 100 semanas

√ Ações:
– Allied Chemical

– du Pont

– Union Carbide

– Exxon

– Texaco
Análise Multivariada - 2016 81
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√ Solução por Máxima Verossimilhança

√ Plot dosloadings:

Análise Multivariada - 2016
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• Rotação Varimax:

• Matriz de Resíduos:
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√ F1*: Indústrias químicas carregam fortemente
– Representam condições econômicas que afetam essas ações

√ F2*: Ações de óleo & gás carregam fortemente
– Representam condições econômicas que afetam essas ações

√ Rotação tende a destruir um fator geral
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Exemplo 9.11 – Decatlo Olímpico

• Continuação exemplo 9.6
√ 160 observações multivariadas (139 atletas)

√ Período: 1948 a 1976

√ Escores padronizados para cada um dos 10 eventos

√ Análise Fatorial de R por componentes principais e
por máxima verossimilhança

√ Dados:BD_multivariada.xls/decatlo
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√ A distribuição dos scores padronizados são normais
ou aproximadamente normais para cada um dos 10
eventos (Linden, 1977)

√ Variáveis:
X1: 100 m rasos

X2: Salto em distância

X3: Arremesso de peso

X4: Salto em altura

X5: 400 m rasos

X6: 100 m com barreiras

X7: Lançamento de disco

X8: Salto com vara

X9: Lançamento de dardo

X10: 1.500 m Análise Multivariada - 2016 87

√ Solução por Componentes Principais

√ Solução por Máxima Verossimilhança

Análise Multivariada - 2016
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√ Rotação Componentes Principais

√ Rotação Máxima Verossimilhança

Análise Multivariada - 2016
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√ Ambos os métodos
– Loadings apontam para mesmo atributos subjacentes

– Fatores 1 e 2 não estão na mesma ordem
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• Solução de máxima verossimilhança -Interpretação:
√ F1*: Arremesso de peso, lançamento de disco e

lançamento de dardo.
– Linden (1977):explosive arm strength

√ F2*: 100 m rasos e 400 m rasos (salto em distância)
– Linden (1977):running speed

√ F3*: Salto em altura, 110 m com barreiras, salto com
vara e salto em distância

– Linden (1977):explosive leg strength

√ F4*: 1.500 m e 400 m rasos
– Linden (1977):running endurance
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• Plot dosloadingsde máxima verossimilhança com
rotação:

√ Em geral, os pontos estão agrupados ao longo dos eixos
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Estimação dos Escores dos Fatores

• Modelo fatorial:

√ Para cada elemento amostralk, seu escore no fator Fj

é calculado como:

– wjk: peso de ponderação de cada variável no Fator Fj
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• Os escores podem ser utilizados para construir:
√ Gráficos

√ Mapas de percepção

√ Variável reposta ou explicativa em outros métodos

• Métodos de estimação dos scores:
√ Método de mínimos quadrados ponderados

√ Método de regressão

√ Método ad hoc
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Exemplo 9.12 – Cálculo dos Scores 
Fatoriais

• Ações New York
√ Solução por Máxima Verossimilhança de R

√ Regressão:

√ Mínimos quadrados ponderados:
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• Para o vetor de observações padronizadas:
√ z’ = [ 0,5; -1,40; -0,20; -0,70; 1,40]

√ scores por regressão

√ Para cálculo da matriz de dados
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• Plot scores fatoriais:
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Critérios para Determinação do Valor de m

• Teste de hipótese para auxiliar na decisão do
número de fatores (m) que são suficientes para o
modelo de análise fatorial

• Suposições do teste:
√ Os vetores aleatóriosZ e F têm distribuição normal

multivariada

√ Amostras de tamanho grande
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• Teste
√ H0: m fatores são suficientes vs.

H1: necessários mais que m fatores

√ Estatística de teste (Bartlett, 1954)

√ Sob H0: T ~ χ2
gl, com gl = ½ [(p – m)2 – p – m]

√ Para o teste ser válido gl > 0
– Se p = 5, m≤ 2

– Se p = 10, m≤ 5

– Se p = 20, m≤ 14

√ Paran grande em pequeno em relação a p, o teste
tende a rejeitar H0 ( indica aumento dem)
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• Comentários:
√ Teste somente é válido para dados provenientes de

distribuição normal p-variada

√ Paran grande em pequeno em relação ap, o teste
tende a rejeitar H0 (indicando o aumento dem)

– Baseando-se apenas na indicação do teste, a tendência será
reter no sistema um número muito grande de fatores sem
necessidade
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Exemplo 9.7 – Teste para valor de m
• Ações Bolsa New York (m= 2)

LzLz’ + ΨΨΨΨ =

R =

|LzLz’ + ΨΨΨΨ| = 0,194403 e |R| =0,193234

√ Valor crítico: gl= ½[(5 – 2)2 – 5 – m] = 1

χ2
1(0,05) = 3,84� Não se rejeita H0

p-valor: P{χ2
1 > 0,574} = 0,448674

– H0 não deveria ser rejeitada em qualquer nível razoável

^ ^ ^

^ ^ ^
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Critério de Akaike
Akaike (1974, 1987)

• Suposições:
√ Dados provenientes de normal multivariada

√ Envolve método de máxima verossimilhança

• Critério: escolhe-se o valor dem que minimize a
função AIC

√ Se dois métodos tem a mesma verossimilhança, o
procedimento vai privilegiar o modelo com menor
número de fatores
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Critério Bayesiano de Schwarz

• Suposições:
√ Dados provenientes de normal multivariada

√ Envolve método de máxima verossimilhança

• Critério: escolhe-se o valor dem que minimize a
função SBC

√ Os critérios AIC e SBC devem ser usados com cautela
– Em geral, indicam quantidade de fatores maior que a

necessária

√ Em geral, o critério SBC resulta em melhores soluções
que o método Akaike
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Matriz de Resíduos

• A observação da matriz de resíduos:
√ Muitas vezes, pode indicar quando o número de

fatores está superdimensionado

√ Ex.:
– Sem não for muito pequeno e a matriz de resíduos estiver

próxima de zero, recomenda-se testar outras soluções para
m menores que o valor já especificado
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• Importante:
√ Análise fatorial deve ser utilizada apenas se utilizada

em situações em que as variáveis originais são
correlacionadas

√ Consequência:
– Evitar soluções comm elevado tal que determinados fatores

fiquem relacionados com uma única variável original

√ Em situações em que aparecem fatores relacionados a
uma única variávelZi é recomendável retirar a
variávelZi e reestimar o modelo de análise fatorial

Análise Multivariada - 2016 115

Validação do Modelo

• Análise Fatorial está fundamentada em
suposições que não podem ser verificadas a
priori:
√ Linearidade e independência dos fatores

√ Interpretação centrada na informação contida na
matriz L (estimada a partir da escolha prévia dem)

• É importante avaliar até que ponto a matriz L está
representando corretamente a relação existente
entre as variáveis originais e os fatores do modelo

^

^
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Estratégia para Análise Fatorial

Johnson & Wichern (2002)

• Decisões em qualquer Análise Fatorial
√ Escolha dem, o número de fatores comuns

– Há muitos testes de adequação assintóticos que são
apropriados apenas os dados que são aproximadamente
normais

– Os teste provavelmente rejeitarão o modelo param pequeno
se o número de variáveis e de observações for alto

– Em geral a escolha é baseada em alguma combinação de:
� proporção de variância amostral explicada

� conhecimento do assunto

� razoabilidade dos resultados
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√ Escolha do método de solução e do tipo de rotação
– São decisões menos cruciais

– A maioria de análises fatoriais satisfatórias são aquelas em
que:

� são tentados mais de um método de rotação

� os resultados confirmam substancialmente a mesma
estrutura

Análise Multivariada - 2016 118

Roteiro

1. Execute uma Análise Fatorial por componentes
principais

√ Este método é particularmente apropriado para uma
primeira passagem pelos dados

√ Procure observações suspeitas plotando os escores
fatoriais

– Calcule os escores padronizados e as distâncias
quadráticas para cada observação

√ Tente rotação Varimax

Análise Multivariada - 2016 119

2. Execute Análise Fatorial de Máxima
Verossimilhança,

√ (incluir uma rotação Varimax)

3. Compare as soluções obtidas pelas duas análises
fatoriais

√ Os loadings se agrupam da mesma maneira?

√ Plote os escores fatoriais obtidos por componentes
principais vs. os obtido pela solução de máxima
verossimilhança

4. Repita passos anteriores para outros valores dem
√ Os fatores extras contribuem necessariamente para a

compreensão e interpretação dos dados?
Análise Multivariada - 2016
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5. Para grandes conjuntos de dados, divida-os pela
metade e excute uma Análise Fatorial em cada
parte

√ Compare os dois resultados, com aquele obtido do
conjunto de dados completo

√ Verifique a estabilidade da solução

√ A divisão pode ser aleatória ou determinística
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Exemplo 9.14

• Medidas de ossos e crânios de frangos White
Leghorn
√ Dados originais: Dunn (1928)

√ Análise fatorial elaborada por Wright (1954)

√ Variáveis:

√ Dados:BD_multivariada.xls/frangos

Crânio
√ X1: comprimento
√ X2: amplitude

Pernas
√ X3: fêmur (comp.)
√ X4: tíbia (comp.)

Asas
√ X5: úmero (comp.)
√ X6: cúbito (comp.)
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• Matriz de Correlações amostral:
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• Solução por Componentes Principais
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• Solução por Componentes Principais

• Matriz de Resíduos

Análise Multivariada - 2016
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• Solução por Máxima Verossimilhança

√ Heywood Case: variância específica da tíbia = 0
– Replicar o resultado, usando a opção Heywood (SAS ou

similar)
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• Solução por Máxima Verossimilhança

• Matriz de Resíduos

Análise Multivariada - 2016
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• Comentários:
√ Após a rotação, os dois métodos de solução parecem

fornecer resultados diferentes

√ Componentes principais:
– F1: Todos os fatores, exceto X1 e X2.

– F2 e F3: cada um com uma única variável

– Solução por três fatores comuns parece estar garantida

(F3 explica uma quantidade significativa da variância)

√ Máxima Verossimilhança:
– F1: Todos os fatores exceto X1 e X2

– F2: Dimensão cabeça (X1 e X2)

– F3: não é claro (provavelmente não é necessário)

– Matriz de resíduos com elementos bastante pequenos

(retenção de 3 ou menos fatores)
Análise Multivariada - 2016
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• PlotdosescoresdeF1 eF2

√ Escores por Mínimos Quadrados Ponderados de estimavas
de máxima verossimilhança com rotação

– Gráficos deste tipo permitem identificar observações que
não são consistentes com o restante das observações
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• Plot dos escores fatoriais obtidos por componentes
principais e por máxima verossimilhança
√ Se os loadings de um particular fator concordam entre

si, os pares de escores deveriam se agrupar próximos à
identidade

√ Conjuntos de loadings que não concordam produzirão
escores fatoriais que se desviam deste padrão

– Usualmente, associado com o último fator, podendo sugerir
que o número de fatores é muito grande

(últimos fatores não significativos)
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√ F1 – Componentes Principais vs. Máxima Verossimilhança
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√ F2 – Componentes Principais vs. Máxima Verossimilhança

√ Uma das observações não é consistente com as demais
– Score incomumente alto

A remoção do ponto 
[39,1; 39,3; 75,7; 115; 73,4; 69,1] 
não altera substancialmente os 
loadings
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√ F3 – Componentes Principais vs. Máxima Verossimilhança

√ Aparentemente, o 3º fator não é necessárioAnálise Multivariada - 2016 133

• Divisão do conjunto de dados em duas partes
iguais (o conjunto de dados é grande)
√ Matrizes de correlação
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√ Estimativas dos loadings por Componentes
Principais com rotação (m=3)

– Os resultados das duas metades são bastante similares
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• Conclusões
√ Fatores F2* e F3* trocam de posição, mas

coletivamente representam as dimensões da cabeça

√ Fator F1* aparenta ser dimensões do corpo
(pernas e asas)

√ A solução é estável
– É a mesma interpretação dada pelo conjunto completo

√ Parece que modelo com um ou dois fatores é
suficiente para ajustar os dados
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Outras Medidas de Ajuste do Modelo

√ Critério de Kaiser-Meyer-Olkin (KMO)

√ Teste de Esfericidade de Bartlett para R
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Critério de Kaiser–Meyer–Olkin 
√ Rencher (2002) sugere que para um modelo de

Análise Fatorial possa ser ajustado adequadamente
aos dados é necessário que R–1 seja próxima da
matriz diagonal

– O coeficiente KMO baseia-se nesse princípio

√ Rij = Corr(Xi, Xj)

√ Qij = Correlação parcial entre 2 variáveis quando
todas as outras variáveis são consideradas constantes

√ Qij ≈ zero� KMO ≈1 � R–1 ≈ diagonal
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• Adequabilidade do ajuste de um modelo de
Análise Fatorial (Rice, 1977)
√ modelo adequado: KMO≥ 0,8

√ modelo excelente: KMO≥ 0,9

√ modelo péssimo: KMO≤ 0,5
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Teste de Bartlett

• Teste de Esfericidade da matriz de correlação
√ Suposições:

– variáveis provenientes de distribuição normal multivariada

– modelo de Análise Fatorial pressupõe que as variáveis
respostas são correlacionadas entre si

√ Teste de hipótese para verificar se a matriz de
correlação populacional é próxima ou não da
identidade
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• Hipóteses:
√ H0: ρρρρ = I vs.H1: ρρρρ ≠ I

• Estatística de teste:

√ λi: autovalores da matriz de correlação amostral R

• Sob H0: T ~ χ2
gl, com gl = ½ p(p – 1)

√ Para se ajustar o modelo de Análise Fatorial, o teste
de Bartlett deve rejeitar H0.

^
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Comentários

• Análise fatorial permanece muito subjetiva
√ Exemplos em que o modelo oferece explicações

razoáveis em termos de poucos fatores interpretáveis

√ Infelizmente o critério para julgar a qualidade de
qualquer análise fatorial não têm sido bem
quantificado

• A qualidade do ajuste parece depender do
critério Huau (wow)
√ Huau, eu compreendi estes fatores

Análise Multivariada - 2016 142

Exemplos

Exemplo

• Expectativa de vida
√ Referente à expectativa de vida (em anos) nos anos

60
– Médias por país, idade e sexo

√ Fonte: Keyfitz e Flieger (1971)

√ Apresentado em Everitt e Hothorn (2011)
√ Dados:lifeex.txt
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• Variáveis:
√ Pais: país (fator com 31 níveis)

√ m0: expectativa média de vida dos homens ao nascer (anos)

√ m25: expectativa média de vida dos homens na juventude (anos)

√ m50: expectativa média de vida dos homens na maturidade (anos)

√ m75: expectativa média de vida dos homens na velhice (anos)

√ w0: expectativa média de vida das mulheres ao nascer (anos)

√ w25: expectativa média de vida das mulheres na juventude (anos)

√ w50: expectativa média de vida das mulheres na maturidade (anos)

√ w75: expectativa média de vida das mulheres na velhice (anos)
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• Carregamento dos dados – Comandos em R:
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√ Teste formal para o número de fatores – Máxima
Verossimilhança

√ Teste: H0: quantidade de fatores é suficiente

√ A solução com 3 fatores pode ser suficiente

√ Cuidado:
– Há apenas 31 países e o uso de teste assintótico pode ser

suspeito
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√ Modelo fatorial com 3 fatores
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• Default do comando factanal é 
rotação Varimax

/
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√ Comunalidades

√ As variáveis h0, h50, m0, m25 e m50 compartilham
muito de suas variâncias através dos fatores

√ As variáveis h25 e h75 são mais únicos
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√ Interpretação dos fatores

√ F1: Expectativa de vida ao nascer (H/M) dominante
(Força de vida ao nascer)

√ F2: Expectativa de vida em mulheres mais velhas
– (Força de vida mulheres mais velhas)

√ F3: Cargas maiores para h50 e h75
– (força de vida homens mais velhos)
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• Diagrama de dispersão dos loadings
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• Gráfico 3-D dos fatores vs. dados
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• Diagramas de dispersão dos escores fatoriais

• Força de vida ao nascer
variando de países como
Camarões e Madagascar para
países como USA

• Argélia se sobressai no 3º.
Eixo
√ Alta expectativa de vida entre

homens

• Camarões baixa expectativa
de vida aos 50
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