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Análise de Componentes Principais

Introdução

• Objetivo:
√ Explicar a estrutura de variância e covariância de

conjunto de variáveis através de algumas
combinações lineares das mesmas

√ Busca-se:
– Redução de dados

– Interpretação
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Componentes Principais Exatas

• Algebricamente:
√ Combinações lineares particulares dasp variáveis

aleatórias X1, X2, ..., Xp.

• Geometricamente:
√ Representam a seleção de um novo sistema de

coordenadas obtidas por rotação do sistema original

√ Os novos eixos representam as direções com maior
variabilidade

√ Fornecem descrição mais simples e mais
parcimoniosa da estrutura de covariâncias
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• Componentes principais:
√ São necessáriasp componentes para reproduzir a

variabilidade total do sistema

√ As componentes são não correlacionadas entre si
– Ortogonalidade entre as componentes

√ Variabilidade das p variáveis é aproximada pela
variabilidade das k principais componentes

– Buscam-se situações em que haja quase tanta informação
nas k componentes principais quanto nas p variáveis
originais
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• Análise de componentes principais:
√ Não pressupõe normalidade

– Componentes principais derivadas de populações normais
têm interpretações úteis

√ Com frequência, revela relações insuspeitadas
– Pode permitir interpretações que não seriam obtidas

preliminarmente

√ Em geral, é um passo intermediário para a aplicação
de outras técnicas
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Componentes Principais Exatas Extraídas 
da Matriz de Covariâncias

• Sejam o vetor aleatório

com matriz de covariâncias éΣΣΣΣ, cujos autovalores são
λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0.

• Componentes principais deΣΣΣΣ:
Y1, Y2, ..., Yp.

√ Combinações lineares não correlacionadas do vetor
aleatório, cujas variâncias são as maiores possíveis
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• Definição – Componente principal:
√ Sistema cuja j-ésima combinação linear deX é

definida como:

√ ej: autovetor correspondente ao j-ésimo autovalor

• Esperança e variância de Yj:

• Covariância entre duas componentes principais:
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√ Buscam-se os valores dos coeficientes aij, tais que:
i. Y1, Y2, ..., Yp tenham variância máxima e sejam não

correlacionadas entre si

ii. Os vetoresai tenham comprimento unitário:

√ Pode-se demostrar que :
– A variância máxima de (ai’ X) é igual aλi.

– É obtida quandoai = ei.
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• Definição 2 – Componente principal:
√ A j-ésima componente principal da matrizΣΣΣΣ é

definida como:

√ ej: autovetor correspondente ao j-ésimo autovalor

• Esperança e variância de Yj:

• Covariância entre duas componentes principais:
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• Comentário:
√ Cada autovalorλj representa a variância de uma

componente principal Yj.

√ Autovalores estão ordenados em ordem decrescente
– A primeira componente é a de maior variabilidade

– A p-ésima componente é a de menor variabilidade

Análise Multivariada - 2016

14



Análise Multivariada - 2016

Prof. Lupércio F. Bessegato - UFJF 4

• Variâncias total e generalizada deΣΣΣΣ:

√ Total:

√ Generalizada deΣΣΣΣ:

√ Em termos dessas duas medidas globais de variação,
os vetoresX e Y são equivalentes
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• Proporção da variância total que é explicada pela
j-ésima componente principal:

√ 1ª componente tem a maior proporção de explicação

• Proporção da variância total que é explicada
pelas k primeiras componentes principais

√ Busca-se analisar um conjunto menor de variáveis
sem perder muita informação sobre a estrutura de
variabilidade original
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• Aproximação deΣΣΣΣ:
√ Analisando as k primeiras componentes principais

√ Cada parcela da soma envolve uma matriz de
dimensão pxp correspondente apenas à informação
da j-ésima componente principal
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Correlação entre Componente Principal e 
Variável Aleatória

• Os coeficientes de correlação entre a
componente principal Yi de S e a variáve1 Xk é

√ A magnitude de eik mede a contribuição da k-ésima
variável na i-ésima componente (a despeito das
outras variáveis).

– Não medem a importância de Xk na presença das outras
variáveis.

– Alguns estatísticos recomendam que somente os valores
eik (e não as correlações) sejam consideradas na
interpretação dos componentes

Análise Multivariada - 2016

18



Análise Multivariada - 2016

Prof. Lupércio F. Bessegato - UFJF 5

Estimação das Componentes Principais –
Matriz de Covariâncias

• Em geral,ΣΣΣΣ é estimada porS:

√ Autovalores deS:

√ Autovetores deS:
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• j-ésima componente principal deS:

• Componentes principais amostrais – Propriedades
i. Variância:

ii. Covariância entre as componentes:

iii. Variância total estimada explicada pela componente:

iv. Correlação estimada entre componente e variável:

Análise Multivariada - 2016

25

• Decomposição espectral deS:

√ Aproximação de S pelas primeiras k componentes

• Scores das componentes
√ Valor das componentes para cada elemento amostral

√ Na prática, o uso das componentes relevantes se dá
através dos scores
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Exemplo 8.3

• Pesquisa com 5 variáveis socioeconômicas
√ X1: População total (milhares)

√ X2: Escolaridade mediana (anos concluídos)

√ X3: Emprego total (milhares)

√ X4: Empregos na área da saúde (centenas)

√ X5: Valor mediano da habitação (x $10.000)

• Dados:BD_multivariada.xls/pesquisa
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• Vetor de médias amostral (��)

• Matriz de covariâncias amostral (S)

• A variação amostral pode ser resumida por uma
ou duas componentes principais?
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• Variância amostral é bem resumida por 2 componentes
√ redução de 14 observações de 5 variáveis para 14 observações

de 2 variáveis

√ 1ª. componente: média ponderada de 4 variáveis

√ 2ª. componente: contraste entre empregos saúde com média
ponderada da escolaridade com valor habitação
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• Correlação mede unicamente importância de
uma variável individual sem considerar a
influência das demais
√ No exemplo, os coeficientes de correlação

confirmam a interpretação fornecida pelos
coeficientes das componentes

Análise Multivariada - 2016

31

Número de Componentes Principais

• Quantas componentes principais devem ser
retidas?
√ Não há resposta definitiva

• Considerações a serem tomadas:
√ Quantidade explicada de variância amostral total

√ Tamanho relativo dos autovalores
(variância das componentes amostrais)

√ Interpretação das componentes
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Scree Plot

• Gráficoλi vs. i
√ Procura-se um ‘cotovelo’ no gráfico

√ São consideradas as componentes até o ponto em que
os autovalores remanescentes são relativamente
pequenos e todos aproximadamente do mesmo valor
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• Exemplo 8.3
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Exemplo 8.4
• Relação entre tamanho e forma de cascos de

tartaruga
√ Comprimento

√ Largura

√ Espessura

√ Gênero: macho/fêmea

• Análise para as tartarugas macho

• Literatura sugere transformação logarítmica em
estudos de relação entre tamanho e forma

• Dados:BD_multivariada.xls/tartarugas
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• Vetor de médias amostral (��)

• Matriz de covariâncias amostral (S)

• A variação amostral pode ser resumida por uma
componente principal?
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• Scree Plot

√ Uma componente principal é claramente dominante
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• Componentes principais:

• Componente adotada:

√ ln(volume) de uma caixa com dimensões ajustadas
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Componentes Principais de Variáveis 
Padronizadas

• Padronização do vetor aleatórioX:

√ V½: matriz diagonal de desvios-padrão

√ Variável padronizada:

√ Matriz de covariâncias deZ:

√ Componentes principais deZ:
– Obtidas dos autovalores e autovetores deP.
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• Componente principal das variáveis padronizadas:
√ A j-ésima componente principal da matrizΣΣΣΣ :

√ ej: autovetor da matriz de correlaçõesP.

• Variância total deP:

√ Proporção de variância populacional (padronizada)
devido à j-ésima componente

√ Correlação entre Yj e Xk:
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Comentários

• As componentes principais deΣΣΣΣ são diferentes
daquelas obtidas deP.
√ Seus autovalores e autovetores são diferentes

√ Um conjunto de componentes principais não é
simplesmente uma função do outro conjunto

• A padronização traz consequências
√ Variáveis deveriam ser padronizadas se elas são

medidas em escalas com amplitudes muito diferentes
– Ex. Vendas anuais e razão entre lucro/ativos
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Padronização dos Componentes Principais 
Amostrais

• Frequentemente são padronizadas:
√ Variáveis medidas em diferentes escalas

√ Na mesma escala, mas com amplitudes bastante
diferentes

• As componentes principais não são invariantes
às mudanças na escala
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• Padronização dos elementos amostrais:

√ D: matriz diagonal dos desvios-padrão amostrais

• Matriz de dados:
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Análise de Componentes Principais –
Matriz de Correlações

• As componentes principais obtidas a partir da
matriz de covariâncias são influenciadas pelas
variáveis de maior variância
√ A padronização das variáveis ameniza esse problema

• Análise de componentes principais de variáveis
padronizadas é equivalente a obter as
componentes principais através da matriz de
correlações
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Estimação das Componentes Principais –
Matriz de Correlação

• P é estimada porR:
√ Importante:SZ = R

√ Autovalores deR:

√ Autovetores deR:
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• j-ésima componente principal deR:

• Componentes principais amostrais – Propriedades
i. Variância:

ii. Covariância entre as componentes:

iii. Variância total estimada explicada pela componente:

iv. Correlação estimada entre componente e variável:
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Exemplo 8.5

• Taxas de retorno de 5 ações negociadas na Bolsa
de New York
√ Período: Jan./75 a Dez./76

√ Ações:
– Allied Chemical

– du Pont

– Union Carbide

– Exxon

– Texaco

√ Dados: BD_multivariada.xls/
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• Taxa de retorno:

• As taxas de retorno entre ativos estão
correlacionadas
√ ações tendem a se mover juntas em resposta às

condições econômicas

indústria 
química

indústria 
óleo & gás
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• Observações de 100 semanas aparentam estar
distribuídas independentemente
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• Vetor de médias amostral (x)

• Matriz de correlação amostral (R)

• A variação amostral pode ser resumida por uma
ou duas componentes principais?

_ 
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LFB1

• Scree Plot

√ Aparentemente duas componentes principais
resumem bem os dados
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• Componentes principais:

√ Duas primeiras componentes com 73% da
variabilidade amostral padronizada total
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LFB1 Calcular matriz de covariâncias amostral
Há domínio de variabilidade?
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• 1ª. componente principal:

√ Variáveis:
– z1: retorno padronizado – Allied Chemical

– z1: retorno padronizado – du Pont

– z1: retorno padronizado – Union Carbide

– z1: retorno padronizado – Exxon

– z1: retorno padronizado – Texaco

√ Interpretação:
– soma ponderada (índice) das 5 ações

– pesos aproximadamente iguais

– Componente geral do mercado de ações
(componente do mercado)
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• 2ª. componente principal:

√ Interpretação:
– contraste entre ações de indústrias químicas e de óleo & gás

– Componente industrial
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• Comentários:
√ A maioria das variações dos ativos devem-se às

atividades de mercado (1ª. componente) e atividades
industriais não correlacionadas (2ª. componente)

√ As componente remanescentes não são de simples
interpretação

– coletivamente , representam variação que é provavelmente
específica de cada ação
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Variáveis Padronizadas – Regra Empírica 

• Reter apenas as componentes cujas variâncias
(λi) são maiores que a unidade
√ componente que explicam individualmente pelo

menos 1/p da variância amostral padronizada total

• No caso do exemplo anterior (8.6), pareceu-se
sensível reter uma componente (y2) associada à
autovalor menor que a unidade
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Importante

√ Um valor pequeno incomum para o último autovalor
da matriz de covariâncias (ou correlação) amostral
pode indicar uma dependência linear não detectada
no conjunto de dados

√ Valores grande de autovalores (e correspondentes
autovetores são importantes em uma análise

√ Autovalores próximos de zero não devem ser
ignorados

– Autovetores associados podem apontar dependências
lineares no conjunto de dados

(problemas computacionais ou de interpretação)

Análise Multivariada - 2016

73

Gráfico dos Componentes Principais

• Podem:
√ revelar observações suspeitas

√ fornecer verificações da hipótese de normalidade

Análise Multivariada - 2016

76

• São combinações das variáveis originais:
√ Se as observações provém de população normal

multivariada, é razoável esperar que as componentes
sejam aproximadamente normais

√ Se forem usadas como entrada em análises adicionais
– Verificar se as 1ª.s componentes são aproximadamente

normais

• As últimas componentes principais podem
ajudar a apontar observações suspeitas
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Resumo

• Procedimento auxiliar na verificação de normalidade
√ Construir diagrama de dispersão para os pares dos

primeiros componentes principais

√ Construir Q-Q plots para os valores amostraisgerados
por cada componente principal

• Identificação de observações suspeitas:
√ Construir diagramas de dispersão e Q-Q plots para as

últimas componentes principais.
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Exemplo 8.7

• Plotando os Componentes Principais dos dados
das tartarugas macho:
√ x1 = ln(comp)

√ x2 = ln(larg)

√ x3 = ln(esp)

• Componentes:
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• Comandos Minitab para Q-Q Plot
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• Observação da 1ª. tartaruga é suspeita.
√ Checar registros ou verificar anomalias na tartaruga

• Excetuado esse dado o scatter plot aparenta estar
razoavelmente elíptico

• Verificar os plots dos outros conjunto de componentes
principais.
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Propriedades Assintóticas

• Assuma que a amostra são observações aleatórias
de população normal p-variada
√ Autovalores desconhecidos são distintos e positivos

√ Distribuição amostral autovalores

√ Distribuição amostral dos autovetores

√ Cadaλi é independente dos elementos deei associados

Análise Multivariada - 2016
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• Intervalo de confiança aproximado para osλi de
amostras suficientemente grandes

• Intervalos de confiança simultâneos de
Bonferroni para mλi’s
√ Trocar zα/2 por zα/2m.
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Componentes Principais para Matrizes de 
Covariâncias com Estruturas Especiais

• Matriz diagonal:

√ j-ésimo autovetor:
– 1 na j-ésima posição

√ j-ésima componente principal:

√ Não há ganho extraindo as componentes principais
– A padronização não altera a situação
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Exemplo

• Estudo de poluição do ar em 41 cidades dos
EUA
√ Ano: 1970

• Dados:Usairpollution{ MVA}
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• Variáveis:
√ SO2: conteúdo de dióxido de enxofre no ar, emµg/m3.

√ Temp: temperatura média anual (ºF)

√ Indust: quantidade de empresas manufatureiras
empregando pelo menos 20 empregados.

√ Pop: população (censo 1970), em milhares.

√ Vento: velocidade média anual de vento, em milhas/h

√ Precip: precipitação média anual, em polegadas

√ Dias: número médio anual de dias com precipitação

Análise Multivariada - 2016
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• Variáveis
√ ‘Resposta’: SO2

√ Ambientais: Vento, Precip, Dias, Temp

√ Demográficas: Indust, Pop
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• Comandos em R:
√ Carregamento dos dados:

√ Comentários:
– Extrair componentes da matriz de correlações:

� Variáveis estão em escalas muito distintas

– Ignora a variável SO2 (considera só as ‘explicativas’)

– Uso da temperatura negativa
� As 6 variáveis têm valores altos, de maneira que representamum

ambiente menos atrativo
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√ Matriz de correlações:

√ Comentário:
– Valores altos de correlação entre Indust e Pop
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√ Matrix plot:
– Comandos em R:

Análise Multivariada - 2016
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√ Gráfico matricial dos diagramas de dispersão

Análise Multivariada - 2016

• Há pelo menos um outlier
√ Provavelmente mais de um
√ Chicago tem cerca do dobro 

de fábricas do que a 2ª. cidade 
com maior número
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√ Análise de componentes principais:

√ 3 primeiras componentes têm variâncias maiores que 1
– Compreendem 85% da variância total

√ Escores das componentes podem ser usados para
visualização gráfica, com pouca perda de informação.
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√ Interpretação das componentes principais:

√ Componente 1
– Relaciona-se com algum índice de qualidade de vida

– Altos valores indicam um ambiente com menos qualidade

√ Componente 2
– Coeficientes altos para Precip e Dias

– Relaciona-se com chuva (clima úmido)

√ Componente 3
– Contraste entre Precip e negtemp

– Separa cidades c/ altas temperaturas e muita chuva (tipo de clima)
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√ Boxplot bivariado para as 3 primeiras componentes

Análise Multivariada - 2016

• Chicago é outlier
√ Suspeita-se de Phoenix e Philadelphia

• Phoenix aparenta ter a melhor qualidade 
de vida
√ Baseando-se nas 6 variáveis

• Bufallo tem clima mais seco
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Questão Interessante

• Quais dentre as variáveis climáticas e ambientais são
as melhores preditoras do grau de poluição do ar
(concentração de SO2)?
√ Esta questão é tratada com regressão linear múltipla

√ Potencial problema para aplicação dessa técnica:
– Alta correlação entre Indust e Pop

√ Solução:
– Retirar uma das variáveis

√ Alternativa:
– Fazer regressão dos níveis de SO2 com as componentes

principais derivadas das 6 variáveis originais

– Pode ser melhor regredir com todas as 6 componentes
Análise Multivariada - 2016
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√ SO2 dependendo das componentes principais
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√ Regressão com as 6 componentes principais:

√ Escores da 1ª. componente predizem mais a resposta

√ Componentes com menor variância não têm
necessariamente as menores correlações com a resposta

Análise Multivariada - 2016
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Exercício – Solo

• Análise de solo
√ 20 amostras

√ Variáveis:
– areia (%)

– sedimentos (%)

– argila (%)

– qte. material orgânico (%)

– acidez do solo (pH)

√ Banco de dados:BD_multivariada.xls/solo

Análise Multivariada - 2016
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• Matriz de covariâncias amostral (S)

• Autovalores de S

√ S é singular poisλ5 = 0 (|S| = 0)
(X1 + X2 + X3 = 100%)
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• Componentes principais (p=5)

√ y5 é constante para qualquer observação j
y5 = 0,577 (100)

√ Qualquer das três variáveis poderia ser eliminada
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• EliminadaX1 (areia)
√ maior variância amostral

tenderia dominar primeira componente

• Matriz de covariâncias amostral (S)

• Autovalores de S
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• Componentes principais (p = 4 – eliminadaX1)

√ Duas primeiras componentes explicam 99,2% da
variância total

– 1ª. Componente: Índice de qualidade do solo em termos de %
sedimentos e argila

� sedimentos é a variável mais importante

– 2ª. Componente: Comparação entre % de sedimentos e % de
argila

� argila tem peso maior na componente

– 3ª. Componente: variável material orgânicoAnálise Multivariada - 2016
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• Scores da 1ª. Componente
√ Índice de qualidade do solo em termos de sedimentos

e areia
(material orgânico tem pouco participação)

Variable   N  N*   Mean  SE Mean  StDev  Minimum     Q1  Median     Q3  Maximum
Scores Y1 20   0  24,86     2,08   9,31    11,57  14,77   24,29  32,43    39,70
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• Diferença de escala e unidades da variáveis
√ Recomendável padronização para análise de

componentes
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• Componentes principais (p=4) – Matriz de
correlação
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