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Introdução ao Bootstrap

Métodos de Reamostragem

• Métodos de permutação:
√ Fisher (1935); Pitman (1937, 1938)

• Jackknife
√ Quenouile (1949); Tukey (1958)

• Bootstrap:
√ Efrom (1979)
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Testes de Permutação

• Conhecido desde os anos 1930s

• Quantidade de permutações possíveis da
amostra: n!

• Impedimento a seu uso
√ Quantidade de permutações à medida que o

tamanho amostral cresce
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Bootstrap e Jackknife

• Jackknife
√ Em princípio útil para amostras pequenas

√ Pode tornar-se computacionalmente
ineficiente para amostras maiores

– (mais viável à medida que cresce a velocidade de
processamento)

√ Efrom (1979)
– Bootstrap construído como aproximação ao

jackknife
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Bootstrap

• Amostra bootstrap:
√ Elementos escolhido aleatoriamente com

reposição a partir da amostra original

√ Tem mesmo tamanho da amostra original (n)

√ Quantidade de reamostras possíveis: ��

• Amostra aleatória do conjunto das
amostras bootstrap possíveis
√ Maneira viável para aproximar a distribuição

das amostral bootstrap
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• Efrom (1979)
√ Conectou bootstraping com jackknife,

método delta, validação cruzada e testes de
permutação

• Efrom (1983)
√ Uso de correção de viés bootstrap com

desempenho melhor que validação cruzada na
estimação de taxas de erros de classificação

√ Variantes do bootstrap com validação cruzada
e métodos de ressubstituição
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• Gong (1986)
√ Uso de bootstrap na construção de modelo de

regressão logística

Bootstrap – Consistência

• Consistência de estimador
√ Aproximar-se do verdadeiro valor do

parâmetro quando o tamanho amostral cresce

• Estimativa bootstrap não é consistente no
sentido probabilístico
√ Exemplos

– Estimação da média quando distribuição não tem
variância finita

– Estimação de máximo e mínimo
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• Em geral, o bootstrap é consistente
quando o Teorema Central do Limite é
aplicável

• Bootstrap m-out-of-n (Bickel e Ren, 1996)
√ m elementos escolhidos aleatoriamente com

reposição da amostra de tamanho n (m < n)

√ Extensão que supera a consistência do
bootstrap

Métodos de Reamostragem

• Objetivo:
√ Estimação de parâmetro populacional

baseando-se apenas nos dados

• Sem suposições sobre a forma da
distribuição populacional, origem dos
dados
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• Caso simples:
√ Observações independentes e identicamente

distribuídas com função de distribuição
acumulada F

√ Função de distribuição empírica (Fn)
– Dá mesmo peso para cada dado (1/n)

– Elemento básico para o bootstraping

• Interesse:
√ Funcionais da distribuição populacional

desconhecida F
– Maioria dos parâmetros são funcionais de F

Exemplo

• � e �� representados como funcionais:

√ RX: conjunto de valores possíveis do
domínio de F

• Ideia:
√ Usar apenas o que é conhecido a partir dos

dados
√ Não introduzir suposições sobre a

distribuição da população
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• Amostra:
√ F é a distribuição populacional e T(F) é o

funcional que define o parâmetro
√ Estimação baseada em amostra iid de F, de

tamanho n
– Fn: função de distribuição empírica
– T(Fn): estimativa amostral do parâmetro

• Amostra bootstrap:
√ Amostra com reposição da amostra original
√ Fn desempenha o papel de F
√ Fn

*: função de distribuição bootstrap
– Desempenha o papel de Fn

Exemplo

• Parâmetro populacional:
√ T � � �:

• Amostra original:

√ Estimativa parâmetro amostral:
√ Função distribuição empírica
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>   # Função distribuição empírica de amostra original
> original <- c(7, 5, 3, 9, 6)
> Fn <- ecdf(original)
> summary(Fn)
Empirical CDF:    5 unique values with summary

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
3       5       6       6       7       9

> knots(Fn)
[1] 3 5 6 7 9
> plot(Fn, ylim = c(0, 1.1) , main = "")
> text(knots(Fn), 1:5/5, knots(Fn), cex = 0.8, pos = 3)
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• Amostra bootstrap:
√ Amostragem com reposição da amostra original

√ Amostra bootstrap:

√ Estimativa bootstrap:

>   # geração de amostra bootstrap
> set.seed(666)
> amostra.boot <- sample(original, 5, replace = T)
[1] 9 7 6 5 5
> mean(amostra.boot)
[1] 6.4
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• Outra amostra bootstrap:
√ Amostragem com reposição da amostra original

√ Amostra bootstrap:

√ Estimativa bootstrap:

>   # geração de outra amostra bootstrap
> (amostra.boot <- sample(original, 5, replace = T))
[1] 9 6 3 7 5
> mean(amostra.boot)
[1] 6.0

Distribuição Bootstrap

• Distribuição da estimativa do parâmetro
de todas as amostras possíveis
√ Quantidade de amostras possíveis: ��

√ No exemplo: 5
 � 3.125
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√ Histograma todas as amostras com reposição

√ Média teórica da
distribuição bootstrap é a
média da amostra original.
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>   # geração de todas as amostras com reposição da original
> library(gtools)
> amostras.boot <- permutations(n = 5,  r = 5, v = original, 
repeats.allowed = T)
> dim(amostras.boot)
[1] 3125    5
> medias.boot <- apply(amostras.boot, 1, mean)
> mean(medias.boot)
[1] 6
> hist(medias.boot, freq = F, ylab = "Densidade", main = "Todas possíveis")
> lines(density(medias.boot), col = "blue")
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Distribuição Bootstrap –
Aproximação Monte Carlo

• Em geral, é inviável gerar todas as
amostras com reposição possíveis
√ Se n = 10, 10�� � 	10	bilhões

• Solução:
√ Repetir muitas vezes o procedimento de

sorteio aleatório com reposição

√ Construir histograma das estimativas bootstrap

√ Aproximação Monte Carlo da distribuição
bootstrap
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√ Histograma todas as amostras com reposição

√ Média das amostras bootstrap
está bem próxima de 6,0.
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>   # Aproximação Monte Carlo da distribuição bootstrap
> medias.boot2 <- replicate(1000, mean(sample(original, 5, replace = T)))
> mean(medias.boot2)
[1] 6.0026
> hist(medias.boot2, freq = F, ylab = "Densidade",main = "Aproximação Monte Carlo")
> lines(density(medias.boot2), col = "blue")

Estatística Computacional II - 2020

24

• Aproximação Monte Carlo da distribuição
bootstrap
√ Permite observação da variabilidade das

estimativas

√ Pode-se estimar
– Assimetria, curtose, erro padrão, intervalos de

confiança

√ Na prática usa-se aproximação Monte Carlo

√ Geração B = 10.000 (ou 100.000) reamostras
– Distribuição se aproxima da distribuição bootstrap

Procedimento

1. Geração de amostras bootstrap (com
reposição) a partir da distribuição
empírica dos dados originais

2. Cálculo de � ��
∗

√ Estimativa bootstrap de � �

3. Repetem-se os passos anteriores B vezes
√ B grande
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Fontes de Erro

• Aproximação Monte Carlo da
distribuição bootstrap
√ Diminui à medida que B é grande

• Aproximação da distribuição bootstrap
(��

∗) à distribuição populacional F
√ O bootstrap funciona se � ��

∗ → � � ,
quando �	 → ∞.

√ Ocorre com frequência mas não é garantido
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• Em muitos casos, está demonstrada a
consistência do bootstrap.
√ Há exemplos em que o bootstrap não é

consistente

√ Há casos que nem a consistência nem a
inconsistência estão provadas

• Usam-se simulações para confirmar ou
negar a utilidade do bootstrap em casos
especiais

Aplicações

• É tentador usar o bootstrap em uma
grande variedade de aplicações
√ Às vezes ele não funciona bem

• Solução:
√ Provar a consistência de acordo a um

conjunto de suposições

√ Verificar comportamento por meio de
simulações
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• Algumas aplicações mais usuais:
√ Construção de intervalos de confiança

√ Estimação de parâmetros

√ Estimação em modelos de regressão
– Bootstrap dos resíduos

– Bootstrap dos vetores (pares)

– Seleção de variáveis

√ Estimação de taxas de erros com ajuste de
viés em problemas de classificação
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• Simplicidade:
√ Para quase todo problema há uma maneira de

gerar amotras bootstrap

• Deve-se tomar cuidados
√ Nem sempre percebe-se quando o bootstrap

irá falhar

• Há extensões do bootstrap com
modificações para contornar problemas
conhecidos na estimação

Bootstrap e a Linguagem R
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>    # Bootsrap no R
> ??bootstrap
> help.search("bootstrap")

Estimação Pontual

Estimação Pontual

• Estimação de viés com bootstrap
√ Correção de viés para aprimorar estimativa

• Bootstrap foi proposto inicialmente para
estimar erro padrão, sendo usado
posteriormente na correção de viés
√ Jacknife é também usado para corrigir viés
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Estimação de Viés

• Seja �� um estimador do parâmetro �.

• Exemplo:
√ Estimador de máxima verossimilhança de ��

de uma variável aleatória normal univariada
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• Estimação bootstrap para o viés:
√ � � 	 !�

�.

√ Aproximação Monte Carlo para "∗:

– "#
∗: estimativa do viés para a j-ésima reamostra

– N: quantidade de amostras bootstrap
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• Comentários:
√ Geralmente o objetivo de estimar o viés é

corrigir uma estimativa
– Subtração do valor estimado de seu viés

√ Correção funciona quando a redução do
quadrado do vício é maior que o aumento da
variância

– De outra maneira a estimativa corrigida pode ser
menos precisa que a original

√ Correção de viés tem de ser executada com
cuidado

Exemplo

• Amostra oriunda de população normal
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> #Correção de Viés
> set.seed(666) 
>   # amostra pequena
> n <- 25 
>   # amostra original
> x <- rnorm(n) 
> head(x)
[1]  0.7533110  2.0143547 -0.3551345  2.0281678 -2.2168745  0.758396
>   # verdadeiro valor do parâmetro
> theta <- 1
>   # EMV da variância (variância amostral não corrigida)
> theta.hat <- function(x) var(x) * (n - 1)/n
>   # estimativa amostral do parâmetro
> (sigma2.hat <- theta.hat(x)
[1] 1.47103
>   # estimativa parâmetro, erro amostral, vies esperado
> c(sig2.amost = theta.hat(x), erro.amost = theta.hat(x) - theta, bias.esp = - 1/n)
sig2.amost erro.amost bias.esp
1.4710295  0.4710295 -0.0400000
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• Aproximação Monte Carlo para o viés

>   # Aproximação Monte Carlo para o viés
>
>   # quantidade de reamostras bootstrap
> N <- 5000
>   # vetor com as estimativas bootstrap de EMV de sigma2
> vetor <- replicate(N, theta.hat(sample(x, n, replace = TRUE)))
>   # estimação de theta.estrela
> theta.star <- mean(vetor)
>   # estimativa bootstrap da variância e estimativa do viés
> c(theta.star, theta.star - theta.hat(x))
[1]  1.41455434 -0.05647518

Estimação de Locação

• Médias amostrais
√ Estáveis se o 4º momento existir

√ Distribuições simétricas unimodais
– Ex.: normal, t com pelo menos 3 gl

– Média amostral é boa medida de tendência central

√ Estimador de máxima verossimilhança da
média de algumas populações

– Estimador consistente e de mínima variância na
classe dos não viciados

– Caso da normal e exponencial (assimetria forte)
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• O que o bootstrap pode oferecer?
√ Desnecessária a utilização de bootstrap

(principalmente a aproximação Monte Carlo)

√ A média de todas as médias bootstrap é a
média amostral

Mediana Amostral

• Populações fortemente assimétricas ou
com média não definida
√ Mediana e moda (no caso de distribuição

unimodal) representam melhor o centro da
distribuição

• Cauchy:
√ Mediana populacional é bem definida e a

mediana amostral é estimador consistente
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• Mediana bootstrap é estimador consistente
da mediana populacional
√ Mas não traz vantagem em relação à mediana

amostral

• Bootstrap pode ser útil para estimar erro
padrão da média e da mediana

Estimação de Dispersão

• Desvio padrão pode ser estimado se o 2º
momento existe

• Distribuições normais (ou com formato
de sino)
√ Regra empírica baseia-se na quantidade de

desvios padrão de afastamento da média
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• Classe das distribuições com 2º momento
definido
√ Desigualdade de Chebyshev:

√ Para $	 � 	 2

√ Limite na probabilidade de a observação estar
k desvios padrão afastada da média (k > 1)

√ Ajuda na compreensão da dispersão dos dados
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• Cauchy
√ Caudas são tão pesadas que não existe média

(nem variância)

√ Não se aplica a desigualdade de Chebyshev

√ Nesses casos, pode-se usar o intervalo
interquartílico como medida de variabilidade
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Estimação Bootstrap de Erro Padrão

• Seja �� um estimador do parâmetro � e ��%
∗

a estimativa bootstrap baseada na i-ésima
amostra bootstrap
√ �∗: média dos � %

∗s

• Estimativa boostrap do erro padrão do
estimador �� é dada por:

Estatística Computacional II - 2020

52

Estimação do Intervalo 
Interquartílico

• Estimador natural:
√ Diferença entre:

– 75º percentil da distribuição boostrap

– 25º percentil da distribuição bootstrap

• Usar aproximação bootstrap caso não seja
possível cálculo exato.
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Intervalos de Confiança

Intervalos de Confiança

• IC bootstrap não são exatos
√ Nível de confiança < nível de confiança

nominal (1 – &)

• Se o estimador bootstrap for consistente o
IC bootstrap também é consistente
√ Nível de confiança se aproxima de 1 – &

quando n cresce
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Método do Percentil de Efrom

• ��%
∗ : i-ésima estimativa bootstrap baseada

na i-ésima amostra bootstrap, de tamanho n

• Procedimento:
√ Ordenar os dados

√ Identificar o centro

√ Tomar o 1	 '
(

�
) 100% menor valor e o

(

�
) 100% maior valor
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• O método percentil não é bom para
amostras pequenas e moderadas, para
distribuições assimétricas ou de cauda
pesada
√ Necessárias modificações (bootstrap de

ordem superior)

Exemplo

• Surimi
√ Proteína de peixe purificada usada na

indústria alimentícia

√ Resistência do gel de surimi é fator crítico na
produção

√ Amostra com 40 porções de surimi
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• Exploração dos dados

√ Distribuição dos dados aparenta ser normal

√ Leve assimetria à esquerda
– Distâncias assimétricas da mediana para Q1 e Q3

>   # amostra de 40 observações de resistência à deformação
> surimi <- c(41.28, 45.16, 34.75, 40.76, 43.61, 39.05, 41.20, 41.02, 41.33, 
+   40.61, 40.49, 41.77, 42.07, 44.83, 29.12, 45.59, 41.95, 45.78, 
+   42.89, 40.42, 49.31, 44.01, 34.87, 38.60, 39.63, 38.52, 38.52,
+   43.95, 49.08, 50.52, 43.85, 40.64, 45.86, 41.25, 50.35, 45.18, 
+   39.67, 43.89, 43.89, 42.16)
> summary(surimi)

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
29.12   40.47   41.86   42.19   44.22   50.52

> c(variancia = var(surimi), desvio = sd(surimi))
variancia desvio
17.297605  4.159039
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√ Verificação normalidade dos dados:

√ Aparentemente há ocorrência
de valores atípicos nas
extremidades.
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>   # teste de normalidade dos dados
> (surimi.test <- shapiro.test(surimi))

Shapiro-Wilk normality test
data:  surimi
W = 0.94942, p-value = 0.07241
>   # qq-plot
> qqnorm(surimi); qqline(surimi)
> text(1, 35, cex = 0.8, 
+ paste0(surimi.test$method,"\np = ", round(surimi.test$p.value, 3)))
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• Intervalo de confiança t:

√ Assumindo normalidade e tamanho amostral

√ Espera-se que seja uma boa aproximação

>   # IC t com 95% - assumindo normalidade (tamanho amostral)
> t.test(surimi)$conf.int[1:2]
[1] 40.85562 43.51588

Método Percentil t de Efrom

• Suponha um parâmetro � e uma
estimativa �+ para ele, obtida por amostra
original de tamanho n

• Seja �∗ a estimativa bootstrap baseada na
amostra original

• Suponha que haja um estimativa !+ do
desvio padrão de �+ e uma estimativa
bootstrap !∗ para !+

√ !∗ é específica à uma amostra bootstrap
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• Seja a estatística bootstrap �∗:

√ Versão bootstrap padronizada e centrada

√ Análoga a

√ Se � é a média populacional e �+, a média
amostral

– T é uma quantidade pivotal se a amostra é
normalmente distribuída

(�	 ∼ -�.�)

√ Quantidade pivotal: quantidade aleatória que
não depende de parâmetro desconhecido
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• Pivoteamento:

• No caso da estatística bootstrap �∗ para a
média populacional:
√ �∗ é assintoticamente pivotal

– A distribuição se torna independente dos
parâmetros e seus percentis convergem para os
percentis da distribuição t

√ Construção de intervalos bootstrap mais
precisos que os obtidos pelo método percentil

Estatística Computacional II - 2020

67

• Caso mais geral:
√ Seja � um parâmetro mais complicado que a

média

√ �∗ : estimativa bootstrap que necessita
aproximação Monte Carlo para gerar o
intervalo de confiança
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• Procedimento:
√ Para cada uma de B amostras bootstrap, há

uma estimativa �∗ e pode-se calcular sua
estatística �∗

√ Ordenam-se os B valores de �∗

√ Intervalo aproximado com 100 1 ' 2& % de
confiança é obtido por

– -∗: 100 1 ' 2& 	 percentil de uma -�.�

– !∗: estimativa bootstrap do desvio padrão de �

Intervalo de Confiança Boostrap t

• Hesterberg et al. (2003)
√ Usa o bootstrap para estimar o erro padrão

√ Recomendado apenas se a distribuição
bootstrap for aproximadamente normal

√ É menos geral que o procedimento percentil
de Efrom
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• Procedimento para intervalo com
100 1 ' 2& % de confiança:

– -�.(
∗ : percentil 100& dos �∗s

– !∗: estimador bootstrap do desvio padrão de �

• Limitação:
√ São necessários !+ e a versão bootstrap !∗

• Solução:
√ Quando � é um parâmetro complicado usar

double bootstrap (ou nested ou iterated)

Exemplo

• Intervalo de confiança bootstrap para �:
√ Conjunto de dados surimi:

√ Erro padrão de /̅:

– Aceitável !+ �
1

�
para amostras moderadas ou

grandes (n 3 30)
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>   # intervalo de confiança bootstrap
> source("surimi.R")
> set.seed(666)
> n <- length(surimi)
> (u0 <- mean(surimi) )
[1] 42.18575
> (Sh <- sd(surimi)/sqrt(n))
[1] 0.6576018
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• IC bootstrap – método percentil

√ �+ é bastante próxima da média bootstrap
√ Erros padrão não tão próximos
√ -∗ aparentemente simétrico

>   # qute de amostras bootstrap
> B <- 1000
>   # cálculo média e estatística t por amostra bootstrap
> est.boot <- function(x) {list(med = mean(x), te = sqrt(n)*(mean(x)-u0)/sd(x))}
> matriz <- replicate(B, est.boot(sample(surimi, n, replace = T)))
> amostras.boot <- matrix(unlist(matriz),ncol = 2, byrow=T)
> colnames(amostras.boot) <- c("theta", "t")
> theta.star <- amostras.boot[, "theta"]
> t.star <- amostras.boot[, "t"]
>   # compara média amostral com as médias bootstrap
> c(u0, mean(theta.star))
[1] 42.18575 42.17262
>   # comapara erro padrão da amostra com erro padrão bootstrap
> c(Sh, sd(theta.star))
[1] 0.6576018 0.6455912
>   # aparenta simetria e normalidade?
> summary(t.star)

Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-2.85347 -0.64650  0.02182  0.01559  0.64791  3.57593

Estatística Computacional II - 2020

73

• IC bootstrap – método percentil

√ Quantis da -∗ são diferentes de quantis da -45

– Refletem assimetria da distribuição subjacente.
√ Proximidade dos dois intervalos sugere

precisão de ambos

>   # quantis dos percentis t bootstrap 2.5% 97.5%
> quantile(t.star, probs = c(0.025,0.975))

2.5%     97.5% 
-1.954212  2.214949
>   # quantis de t com n-1 graus de liberdade
> qt(c(0.025,0.975), n - 1)
[1] -2.022691  2.022691
>   # intervalo de confiança bootstrap percentil t
> u0 + quantile(t.star, probs = c(0.025,0.975)) * Sh

2.5%    97.5% 
40.90066 43.64230
>   # intervalo de confiança t de student
> u0 + qt(c(0.025,0.975), n - 1) * Sh
[1] 40.85562 43.51588
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• IC bootstrap – pacote “bootstrap”

√ Resultado próximo dos resultados anteriores

> # usando o pacote bootstrap
> 
> set.seed(666)
> library("bootstrap")
>   # função para erro padrão da amostra bootstrap
> sdmean <- function(x, ...) {sqrt(var(x)/length(x))}
>   # função para cálculo IC bootstrap
> boott(surimi, theta = mean, sdfun = sdmean, nboott = 1000, 
+ perc = c(0.025,0.975) #bootstrap percentile t
+ )
$`confpoints`

0.025    0.975
[1,] 40.90306 43.48429

Bootstrap Iterado

• Há numerosos procedimentos para
iteração bootstrap

• Intervalos de confiança aproximados com
precisão de 1ª ordem:
√ Diferença entre verdadeira probabilidade de

cobertura e probabilidade de cobertura limite
tende a zero a uma taxa �.�/�.

√ Alguns procedimentos:
– Padrão

– Percentil bootstrap
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• Intervalos de confiança aproximados com
precisão de 2ª ordem:
√ Diferença entre verdadeira probabilidade de

cobertura e probabilidade de cobertura limite
tende a zero a uma taxa �.�.

√ Alguns procedimentos:
– Percentil t

– BCa

– Bootstrp duplo

√ Dados 2 Ics de precisão de 2ª ordem. Qual a
melhor escolha

– Menor comprimento esperado

Exemplo

• Intervalo de confiança bootstrap duplo
para �:
√ Conjunto de dados surimi:

√ Estimativa boostrap do erro padrão
– Bootstrap interno de 100 reamostras

√ Estimativa bootstrap do IC
– Bootstratp externo com om 1.000 reamostras
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> # double bootstrap - "bootstrap" package
> set.seed(666) 
>   # IC bootstrap 95% - percentile t c/ bootstrap aninhado
> boott(surimi, theta = mean, nbootsd = 100, nboott = 1000,
+ perc = c(0.025,0.975))
$`confpoints`

0.025    0.975
[1,] 40.78245 43.52531
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• Comentários:

√ Intervalo com 95% de confiança bastante
próximo dos anteriores

√ Não exige fórmula para o erro padrão do
estimador

√ Pode ser usado com qualquer estatística
– Custo computacional pode ser alto

Intervalo de Confiança Bootstrap
com Correção de Viés

• Incorporam procedimento para correção
de vício do bootstrap

• Alguns procedimentos:
√ Bootstrap BC (Bias correction)

– Trabalha bem com coeficiente de correlação
bivariado

� Nesse caso o método percentil não trabalha bem

– Não tem precisão de 2ª ordem
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√ Bootstrap BCa:
– Incorpora constante de aceleração na correção de

viés

– Baseado no 3º momento
� Corrige assimetria

√ Percentil ajustado (Davison e Hinkely, 1997)
– Tem precisão de 2ª ordem

√ ABC
– Muito próxima da precisão do BCa

– Embora tenha um parâmetro a mais, é mais
simples e mais rápido que o método BCa.

Exemplo

• Intervalo de confiança bootstrap BCa:
√ Pacote boot:

√ Estimativa comparável com as anteriores
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library("boot")
> # correção de viés - bootstrap BCa e ABC
> 
> 
> library("boot")
> set.seed(666)
> # IC bootstrap BCa
>   # estimação dados os dados x e o conjunto de índices i
> fboot <- function(x, i) mean(x[i])
>   # gera as estimativas bootstrap
> bs <- boot(surimi, fboot, R = 1000)
>   # IC 95% bootstrap BCa
> boot.ci(bs, type = "bca" , conf = 0.95)
Intervals : 
Level       BCa          
95%   (40.73, 43.33 )
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• Intervalo de confiança bootstrap ABC:
√ Pacote “boot”

√ Resultado próximo dos anteriores

> # IC bootstrap ABC
> 
>   # usa média pondereada
> fabc <- function(x, w) w %*% x
>   # IC 95% bootstrap ABC
> abc.ci(surimi, fabc, conf = 0.95)
[1]  0.95000 40.84506 43.39569

Bootstrap Paramétrico

Bootstrap Paramétrico

• Assume-se que F pertence a uma família
paramétrica

• Amostragem com reposição a partir dessa
distribuição
√ Se é usado o método de máxima

verossimilhança para estimar os parâmetros
de F, a abordagem é essencialmente a mesma
que a de Máxima Verossimilhança
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• Em geral, executar o bootstrap acrescenta
pouco nos problemas paramétricos

• Em problemas complexos, pode ser útil
pelo menos uma parametrização parcial
√ Modelo de riscos proporcionais de Cox

• Comparação entre bootstrap paramétrico e
não paramétrico pode auxiliar na
verificação das suposições paramétricas
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√ Exemplo:
– Qual é o valor esperado da mediana de uma

amostra aleatória de tamanho n = 51, de uma
população Exponencial (1)? E sua variância?

> # geração de uma amostra uniforme
> set.seed(666)
> options(digits = 2)
> (x <- runif(10))
[1] 0.774 0.197 0.978 0.201 0.361 0.743 0.979 0.498 0.013 0.260
> hist(x, freq = F, ylab = "Densidade")
> mean(x)
[1] 0.5
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√ Mediana amostral
– Valor estimado da esperança e variância

> # valor estimado da esperança e da variância da mediana amostral
> set.seed(666)
> medianas <- replicate(10000, median(rexp(n = ene, rate = taxa)))
> (media <- mean(medianas))
[1] 0.7039184
> (variancia <- var(medianas))
[1] 0.01943892
> # histograma das 10.000 réplicas
> hist(medianas, freq = F, xlab = "Valores observados", ylab = 
"Densidade",
+ main = "Histograma das medianas simuladas")
> text(0.4, 2.65, "Valores exatos", cex = 0.8)
> text(0.4, 2.50, expression(lambda == 1), cex = 0.8)
> text(0.4, 2.35, expression(mu == 0.70286), cex = 0.8)
> text(0.4, 2.20, expression(sigma^2 == 0.01978), cex = 0.8)
> text(1.2, 2.65, "Valores estimados", cex = 0.8)
> text(1.2, 2.5, paste("n =", ene), cex = 0.8)
> text(1.2, 2.35, bquote(bar(x)[med] == .(round(media, 5))), cex = 0.8)
> text(1.2, 2.20, bquote(s[med]^2 == .(round(variancia, 5))), cex = 0.8)
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√ Histograma dos valores observados

√ Construção de intervalo
de confiança para a
mediana.

√ Poderia ser aproximada
pela normal?

Modelos de Regressão por 
Bootstrap
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Estimação Bivariada

• Reamostragem de mais de uma variável:
√ Medidas de várias variáveis por indivíduo

– Reamostrados os indivíduos (linhas)
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Exemplo

• Estimação de correlação
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> # reamostragem de mais de uma variável
> set.seed(666)
> (xy <- data.frame(x = runif(10), y = runif(10)))

x     y
1  0.774 0.776
2  0.197 0.016
3  0.978 0.096
4  0.201 0.142
5  0.361 0.211
6  0.743 0.811
7  0.979 0.037
8  0.498 0.892
9  0.013 0.483
10 0.260 0.467
> plot(y ~x, data = xy, xlim = c(0, 1), ylim = c(0, 1))
> # correlação original
> cor(xy$x, xy$y)
[1] 0.043
>   # IC paramétrico para correlação
> cor.test(xy$x, xy$y)$conf.int[1:2]
[1] -0.6030740  0.6547849
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√ Reamostragem de uma amostra:
> # uma amostra bootstrap
> (xy.boot <- xy[sample(1:nrow(xy), replace = TRUE),])

x     y
10  0.260 0.467
7   0.979 0.037
1   0.774 0.776
2   0.197 0.016
9   0.013 0.483
3   0.978 0.096
1.1 0.774 0.776
7.1 0.979 0.037
6   0.743 0.811
9.1 0.013 0.483
> # estimativa bootstrap da correlação
> cor(xy.boot$x, xy.boot$y)
[1] -0.14

> xy
x     y

1  0.774 0.776
2  0.197 0.016
3  0.978 0.096
4  0.201 0.142
5  0.361 0.211
6  0.743 0.811
7  0.979 0.037
8  0.498 0.892
9  0.013 0.483
10 0.260 0.467
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√ Reamostragem de duas amostras:
> # duas amostras bootstrap
> (xy.boot2 <- replicate(2, xy[sample(1:nrow(xy),replace=T),], simplify = F))
[[1]]

x     y
5   0.361 0.211
4   0.201 0.142
9   0.013 0.483
6   0.743 0.811
7   0.979 0.037
5.1 0.361 0.211
3   0.978 0.096
10  0.260 0.467
8   0.498 0.892
6.1 0.743 0.811
> is.list(xy.boot2)
[1] TRUE
> sapply(xy.boot2, function(mat) cor(mat$x, mat$y))
[1] -0.0515  0.0025

> xy
x     y

1  0.774 0.776
2  0.197 0.016
3  0.978 0.096
4  0.201 0.142
5  0.361 0.211
6  0.743 0.811
7  0.979 0.037
8  0.498 0.892
9  0.013 0.483
10 0.260 0.467

[[2]]
x     y

3    0.978 0.096
6    0.743 0.811
2    0.197 0.016
10   0.260 0.467
9    0.013 0.483
8    0.498 0.892
4    0.201 0.142
7    0.979 0.037
6.1  0.743 0.811
10.1 0.260 0.467
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√ Reamostragem com 100 réplicas:

– Estimação de intervalo com 95% de confiança:
> # intervalo com 95% de confiança aproximado para a média
> quantile(corr.boot2, probs = c(0.025, 0.975))
2.5%   98% 
-0.31  0.17

> # 100 amostras bootstrap, com cálculo da correlação de cada reamostra
> xy.boot <- replicate(100, xy[sample(1:nrow(xy),replace=T),], simplify
= F)
> corr.boot <- sapply(xy.boot, function(mat) cor(mat$x, mat$y))
> hist(corr.boot, freq = F, ylab = "Densidade")

√ A precisão da estimativa do
coeficiente de correlação
amostral melhorou?
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√ Reamostragem de mais de uma variável:
– Amostra bivariada original de tamanho 50

> # amostra bivariada de tamanho 50
> set.seed(666)
> options(digits = 2)
> xy2 <- data.frame(x = runif(50), y = runif(50))
> head(xy2)

x     y
1 0.77 0.069
2 0.20 0.085
3 0.98 0.130
4 0.20 0.746
5 0.36 0.039
6 0.74 0.686
> plot(y ~ x, data = xy2, xlim = c(0, 1), ylim = c(0, 1))
> # correlação original
> cor(xy2$x, xy2$y)
[1] -0.077
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– Reamostragem com 100 réplicas:

– Estimação de intervalo com 95% de confiança:
> # intervalo com 95% de confiança aproximado para a média
> quantile(corr.boot, probs = c(0.025, 0.975))
2.5%   98% 
-0.61  0.77

> # 100 amostras bootstrap, com cálculo da correlação de cada reamostra
> xy2.boot <- replicate(100, xy2[sample(1:nrow(xy2),replace = T),], 
simplify = F)
> corr.boot2 <- sapply(xy2.boot, function(mat) cor(mat$x, mat$y))
> hist(corr.boot2, freq = F, ylab = "Densidade")

√ Como seria uma estimativa
bootstrap da correlação se
amostra fosse maior?

Bootsrapping em Regressão

• Estimação bootstrap de modelo de
regressão:
√ Bootstrap de vetores (ou pares)

√ Bootstrap de resíduos

• Ambas abordagens podem ser usadas
tanto em regressão linear quanto não
linear
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Regressão Linear

• Estimadores de mínimos quadrados:
√ Modelo é razoável se o termo de erro pode

ser considerado iid, com média zero e
variância constante ��

√ Estimação bootstrap não agregará nada

• Teorema de Gauss-Markov
√ EMQ dos parâmetros de regressão são não

viciadas, com a menor variância na classe
dos estimadores lineares não viciados
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• Matriz de covariâncias de 78:
√ 78: EMQ de 7.

√ Se �9� é o EMQ da variância residual, o
estimador usual de : é:

• Caso o erro possa ser considerado normal
√ EMQ tem a propriedade adicional de ser

estimador de mínimos quadrados

√ Estimador mais eficiente

Violações do Modelo Normal

• As estimativas não são robustas se as
hipóteses do modelo forem violadas
√ Erros com cauda pesada ou com outliers

– EMQ darão muito peso aos outliers, tentando
ajustá-los em detrimento do restantes dos dados

– Outliers têm grande influência nos parâmetros da
regressão quando sua remoção acarreta mudança
importante dos parâmetros

√ Procedimentos robustos a outliers:
– Desvios absolutos mínimos, Estimação-M,

medianas repetidas
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• Independente do procedimento de
estimação dos parâmetros da regressão
√ Se interesse é construção de IC’s para

parâmetros e IP’s para observações futuras
– Necessário conhecimento sobre distribuição de ;

√ Caso distribuição do erros seja normal
– IC’s e IP’s são calculados diretamente

• Bootstrap é útil na construção de IC’s e
IP’s em modelos de regressão.
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• Outras complicações que podem ser
solucionadas pelo bootstrap
√ Heterocedasticidade

√ Não linearidade dos parâmetros do modelo

√ Viés devido a transformações

Bootstrap de Vetores (ou Pares)

• Amostra original:
√ n vetores com dimensão p+1:

• Amostra bootstrap:
√ Reamostragem com reposição de n vetores

de dimensão p+1

√ Ajuste de modelo em cada amostra bootstrap
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• Considera que as observações são iid,
possivelmente com estrutura de correlação

• Método é mais robusto a desvios de
normalidade e/ou na presença de erro de
especificação dos termos do modelo

Bootstrap dos Resíduos

• Amostra original:
√ Ajusta-se um modelo aos dados, calculando-

se os resíduos do modelo

• Amostra bootstrap:
√ Reamostragem com reposição dos resíduos

√ Obtenção de pseudo amostra com estimação
do resíduo bootstrap às estimativas

√ Ajuste de modelo à pseudo amostra
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• Modelo:

√ gi: função de forma conhecida para um
conjunto de covariáveis (X1, X2, ..., Xp)

– Para regressão linear, é a mesma função para cada
i e é linear nos componentes de 7.

√ 7 : vetor de dimensão p associados às
covariáveis

√ <% : erro iid de uma distribuição F
desconhecida

√ Assume-se que F está centrada em zero
– Em geral, exige-se que a mediana seja zero
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• Estimação de 7:
√ Determinar valores que minimizam uma

distância de = 7 até os dados observados
>�, >�, … , >�

√ A >, = 7 : medida de distância:
– Critério dos mínimos quadrados:

– Critério dos mínimos desvios absolutos
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• Estimativa 78 são os valores de 7 tais que:

• Resíduos são definidos como:
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• Geração dos resíduos bootstrap:
√ Utiliza-se a função de distribuição empírica

para os resíduos
– Probabilidade de 1/n para cada resíduo <%

– Escolha com reposição de amostra com n resíduos

– Geração de amostra bootstrap de observações

– Para cada amostra bootstrap estima-se 7∗ tal que:
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• Aproximação Monte Carlo:
√ Repetição do processo B vezes

• Estimativa bootstrap para a matriz de
covariâncias de 78:

√ onde:
– 7B

∗: estimativa de 7 da j-ésima amostra bootstrap
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• Bootstrapping de resíduos:
√ Aplicável quando for assumido modelo

paramétrico de regressão

√ Funciona bem quando os termos dos resíduos
são normais

√ Na prática podemos não estar seguros de que
a forma paramétrica está correta

– Nesse caso, melhor usar bootstrap de vetores

Bootstrap Vetores e Resíduos

• Comparação dos métodos:
√ São assintoticamente equivalentes se modelo

está correto

√ Desempenho pode ser diferente em amostras
pequenas

√ Bootstrap por vetores é menos sensível às
hipóteses do modelo

– Pode funcionar razoavelmente quando hipóteses
são violadas

– Método usa o modelo explicitamente o modelo
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Heterocedasticidade

• Métodos que funcionam bem quando a
variância residual é heterocedástica
√ Bootstrap por vetores

– Funciona melhor que o bootstrap de resíduos

√ Resíduos bootstrap modificados
– Wild bootstrap
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Regressão Não Linear

• Modelos não-lineares
√ Permitem aproximações locais lineares por

meio de expansões por séries de Taylor

√ Classe de modelos altamente não lineares em
que as aproximações lineares não funcionam

• Efrom (1982):
√ Bootstrap pode ser aplicado a quase todo

problema não-linear
– Não necessitam ter formas não-lineares

diferenciáveis
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• Exemplos:
√ Modelo linear:

√ Modelo não-linear:
– CDEF não é função linear de �4.

Exemplo

• Conjunto de dados faithful:
√ Tempo entre erupções e duração de erupções

de gêiser denominado Old Faithful
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>   # carregamento do conjunto de dados
> help(faithful)
> str(faithful)
'data.frame':   272 obs. of  2 variables:
$ eruptions: num  3.6 1.8 3.33 2.28 4.53 ...
$ waiting  : num  79 54 74 62 85 55 88 85 51 85 ...
> dim(faithful)
[1] 272   2
> head(faithful)
eruptions waiting
1     3.600      79
2     1.800      54
3     3.333      74
4     2.283      62

√ Histograma das variáveis:

√ Variáveis com bimodalidade
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> par(mfrow = c(2, 1))
>   # eruptions
> hist(faithful$waiting, freq = F, ylab = "Densidade", main = "",
+ xlab = "Tempo entre erupções (min)")
> lines(density(faithful$waiting), col = "blue")
>   # durations
> hist(faithful$eruption, freq = F, ylab = "Densidade", main = "",
+ xlab = "Duração da erupção (min)")
> lines(density(faithful$eruption), col = "blue")
> par(mfrow = c(1, 1))
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√ Plot das variáveis:

√ Apresenta dois clusters
– Regiões de bimodalidade
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>   # plot dos dados
> plot(waiting ~ eruptions, data = faithful, ylab = "Tempo entre erupções (min)",
+ xlab = "Duração da erupção (min)")
>   # modelo linear
> ml.1 <- lm(waiting ~ eruptions, data = faithful)
> abline(ml.1, col = "blue", lty = 2, lwd = 2)
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√ Ajuste do modelo linear

>   # modelo linear
> ml.1 <- lm(waiting ~ eruptions, data = faithful)
> summary(ml.1)
Residuals:

Min       1Q   Median 3Q      Max 
-12.0796  -4.4831   0.2122   3.9246  15.9719 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  33.4744     1.1549   28.98   <2e-16 ***
eruptions 10.7296     0.3148   34.09   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.914 on 270 degrees of freedom
Multiple R-squared:  0.8115,    Adjusted R-squared:  0.8108 
F-statistic:  1162 on 1 and 270 DF,  p-value: < 2.2e-16
>   # intervalos de confiança parãmetros
> confint(ml.1)

2.5 %   97.5 %
(Intercept) 31.20069 35.74810
eruptions   10.10996 11.34932

√ Verificação do modelo:
– Independência dos resíduos

√ Desvio em relação aos valores
positivos dos resíduos
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>   # Independência dos resíduos
> plot(ml.1$residuals, pch = 16, ylim = c(-15, 15), ylab = "Resíduos",
+ xlab = "Ordem dos dados")

√ Verificação do modelo:
– Normalidade

√ Desvios acentuados na
extremidade inferior

√ Rejeita-se a hipótese de
normalidade
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>   # normalidade dos resíduos
> qqnorm(ml.1$residuals); qqline(ml.1$residuals)
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√ Verificação do modelo:
– Homogeneidade da variância

√ Clusters no gráfico
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>   # Homogeneidade da variância
> preditos.1 <- fitted(ml.1)
> PadPred.1 <- scale(preditos.1)
> PadRes.1 <- scale(ml.1$res)
> plot(PadPred.1, PadRes.1, pch = 16, xlab = "Valores preditos padronizados",
+ ylab = "Resíduos padronizados")
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• Intervalos de confiança bootstrap
√ Método dos vetores

> # bootstrap dos vetores
> B <- 10000
>   # geração das amostras bootstrap
> Tboot <- matrix(0, nrow = B,ncol = 2)
> for(i in 1:B){
+ s <- 1:272
+ u <- sample(s, 272, replace = T)
+ f <- faithful[u, ]
+ x <- f[, 1]
+ y <- f[, 2]
+ ajuste <- lm(y ~ x)
+ Tboot[i, ] <- summary(ajuste)$coefficients[, 1]
+ }
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√ Estimação bootstrap dos parâmetros
>   # estimativas bootstrap pontuais
> beta0 <- mean(Tboot[, 1])
> beta1 <- mean(Tboot[,2])
> beta0
[1] 33.47715
> beta1
[1] 10.73111
> 
>   # estimativas bootstrap intervalares
> beta0.IC <- quantile(Tboot[,1], prob = c(0.025, 0.975))
> beta1.IC <- quantile(Tboot[,2], prob = c(0.025, 0.975))
> beta0.IC

2.5%    97.5% 
31.31975 35.65300
> beta1.IC

2.5%    97.5% 
10.14290 11.31889

√ Distribuição dos parâmetros bootstrap:
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>   # histograma dos interceptos
> hist(Tboot[, 1], main = "Histograma dos Interceptos", freq = F,
+ xlab = "Valores bootstrap", ylab = "Densidade")
> abline(v = beta0, col = "red")
> abline(v = quantile(Tboot[, 1], prob = c(0.025)), col = "blue", lty = 2)
> abline(v = quantile(Tboot[, 1], prob = c(0.975)), col = "blue", lty = 2)
>   # histograma das inclinações
> hist(Tboot[, 2], main = "Histograma das Inclinações", freq = F,
+ xlab = "Valores bootstrap", ylab = "Densidade")
> abline(v = beta1, col = "red")
> abline(v = quantile(Tboot[, 2], prob = c(0.025)), col = "blue", lty = 2)
> abline(v = quantile(Tboot[, 2], prob = c(0.975)), col = "blue", lty = 2)
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• Intervalos de confiança bootstrap
√ Método dos resíduos

> # bootstrap dos resíduos
> 
> x <- faithful$eruptions
> f <- fitted(ml.1)
> e <- residuals(ml.1)
>  # quantidade de amostras bootstrap
> B <- 10000
>  # Geração das amostras bootstrap
> Tboot <- matrix(0, nrow = B, ncol = 2)
> for(i in 1:B){
+ e.star <- sample(e, 272, replace = T)
+ y.star <- f + e.star
+ Tboot[i, ] <- summary(lm(y.star ~ x))$coefficients[, 1]
+ }
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√ Estimação bootstrap dos parâmetros
>   # estimativas bootstrap pontuais
>   # Estimação bootstrap pontual
> beta0 <- mean(Tboot[, 1])
> beta1 <- mean(Tboot[, 2])
> beta0
[1] 33.49229
> beta1
[1] 10.72536
> 
>   # estimativas bootstrap intervalares
> beta0.IC <- quantile(Tboot[,1], prob = c(0.025, 0.975))
> beta1.IC <- quantile(Tboot[,2], prob = c(0.025, 0.975))
> beta0.IC

2.5%    97.5% 
31.24205 35.80458 
> beta1.IC

2.5%    97.5% 
10.09827 11.32948

√ Distribuição dos parâmetros bootstrap:
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>   # histograma dos interceptos
> hist(Tboot[, 1], main = "Histograma dos Interceptos", freq = F,
+ xlab = "Valores bootstrap", ylab = "Densidade")
> abline(v = beta0, col = "red")
> abline(v = quantile(Tboot[, 1], prob = c(0.025)), col = "blue", lty = 2)
> abline(v = quantile(Tboot[, 1], prob = c(0.975)), col = "blue", lty = 2)
>   # histograma das inclinações
> hist(Tboot[, 2], main = "Histograma das Inclinações", freq = F,
+ xlab = "Valores bootstrap", ylab = "Densidade")
> abline(v = beta1, col = "red")
> abline(v = quantile(Tboot[, 2], prob = c(0.025)), col = "blue", lty = 2)
> abline(v = quantile(Tboot[, 2], prob = c(0.975)), col = "blue", lty = 2)

Seleção de Variáveis

• Há muitas maneiras de conduzir seleção
de variáveis em problemas de regressão
√ Critérios de escolha:

– G�

– AIC – Akaike Information Criterion

– BIC – Bayesian Information Criterion

– Teste F stepwise

– Complexidade estocástica

√ Algumas dessas abordagens podem ser
aplicadas em regressão não linear
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Exemplo

• Considere o modelo:

√ com:

√ Objetivo:
– Determinar modelo subjacente em contexto mais

geral de especificação

√ Usada regressão linear stepwise com AIC
– B = 1.000 reamostras de 51 dados
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√ Construção de conjunto de dados
> #   Seleção de Variáveis
> set.seed(666)
> t <- seq(-5, 5, 0.2)
>   # qte de dados
> (n <- length(t) )
[1] 51
>   # construção do conjunto de dados
> x <- t
> z <- sin(t)
> y.verd <- 0.5 + 0.5*x + 0.2*x^2 + z + 0.1*x*z
> epsilon <- rnorm(n, 0, 0.5)
> dados <- data.frame(x = x, x2 = x^2, z = z, z2 = z^2, xz = x*z, x3 = x^3,
+ z3 = z^3, x2z = x^2*z, xz2 = x*z^2, y = y.verd + epsilon)
> head(dados)

x    x2         z        z2        xz       x3        z3      x2z
1 -5.0 25.00 0.9589243 0.9195358 -4.794621 -125.000 0.8817652 23.97311
2 -4.8 23.04 0.9961646 0.9923439 -4.781590 -110.592 0.9885379 22.95163
3 -4.6 21.16 0.9936910 0.9874218 -4.570979  -97.336 0.9811922 21.02650
4 -4.4 19.36 0.9516021 0.9055465 -4.187049  -85.184 0.8617199 18.42302

xz2        y
1 -4.597679 3.856118
2 -4.763251 4.233183
3 -4.542140 2.791026
4 -3.984405 3.718981
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√ Ajuste do modelo

√ Ajuste do modelo simulado a partir da
especificação mais geral

> library("MASS")
>   # ajuste do modelo
> library("MASS")
>   # inciando a modelagem
> mod.1 <- lm(y ~ x + z, data = dados) 
> amod.l <- stepAIC(mod.1, scope = list(upper = ~ x + z + x2 + z2 + xz + x3 + 
+ z3 + x2z + xz2, lower = ~ 1), trace = FALSE)
> summary(amod.l)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.15488    0.17896   0.865 0.391389    
x            0.57449    0.04582  12.539 2.76e-16 ***
z            0.72747    0.19557   3.720 0.000551 ***
x2           0.24315    0.02317  10.493 1.13e-13 ***
xz           0.20480    0.07966   2.571 0.013520 *  
x2z          0.03416    0.01995   1.712 0.093742 .  
---
Residual standard error: 0.5485 on 45 degrees of freedom
Multiple R-squared:  0.9435,    Adjusted R-squared:  0.9373 
F-statistic: 150.4 on 5 and 45 DF,  p-value: < 2.2e-16
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√ Bootstrap para encontrar modelos comuns:

√ Código continua no próximo slide!

>   # bootstrap para encontrar modelos comuns
> nReal = 1000
>   # proporção de ocorrência de cada variável
> p <- rep(0, 9)
> iReal <-1
> for (iReal in 1:nReal){
+   # bootstrap por indices
+ ind <- sample(1:n, n, replace = TRUE) 
+   # seleção das linhas da reamostra
+ bdados <- dados[ind,] 
+   # inicialização do modelo
+ mod.2 <- lm(y ~ x + z, data = bdados) 
+ amod.2 <- stepAIC(mod.1, scope = list(upper = ~ x + z + x2 + z2 + xz + 
+ x3 + z3 + x2z + xz2, lower = ~ 1), trace = FALSE)
+   # variáveis ajustadas
+ s <- names(coef(amod.2)) 
+ m <- length(s)

... # o código continua no próximo slide
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√ Código para bootstraping (continuação):
>   # bootstrap para encontrar modelos comuns
+   # verifica os termos das variáveis
+ for (j in 2:m){ 
+ if (s[j] == "x"){
+ p[1] <- p[1] + 1
+ }else if (s[j] == "x2"){
+ p[2] <- p[2] + 1
+ }else if (s[j] == "z"){
+ p[3] <- p[3] + 1
+ }else if (s[j] == "z2"){
+ p[4] <- p[4] + 1
+ }else if (s[j] == "xz"){
+ p[5] <- p[5] + 1
+ }else if (s[j] == "x3"){
+ p[6] <- p[6] + 1
+ }else if (s[j] == "z3"){
+ p[7] <- p[7] + 1
+ }else if (s[j] == "x2z"){
+ p[8] <- p[8] + 1
+ }else if (s[j] == "xz2"){
+ p[9] <- p[9] + 1
+ }else{
+ cat("Erro!", sprintf("%5d", m), sprintf("%5d", j), "\n")
+ cat(s)
+ }
+ }
+ } # final do código

Estatística Computacional II - 2020

147

√ Análise do resultado do bootstrap:

√ Encontrados todos os termos do modelo
– Junto com o termo /�H espúrio (p > 0.05)

√ Refazer com set.seed(1).

>   # Análise dos resultados
> print("Variáveis: x, x^2, z, z^2, x*z, x^3, z^3, x^2*z, x*z^2")
[1] "Variáveis: x, x^2, z, z^2, x*z, x^3, z^3, x^2*z, x*z^2"
> print("Verdadeiro:: 1 1 1 0 1 0 0 0 0")
[1] "Verdadeiro:: 1 1 1 0 1 0 0 0 0”
>   # proporções associadas com os termos das variáveis
> (prop <- p/nReal)
[[1] 1 1 1 0 1 0 0 1 0
>   # tabela de resultados
> tabela <- rbind(c(1, 1, 1, 0, 1, 0, 0, 0, 0), p/nReal)
> rownames(tabela) <- c("Verdadeiro", "Bootstrap")
> colnames(tabela) <- c("x", "x^2", "z", "z^2", "x*z", "x^3", "z^3", "x^2*z", 
+ "x*z^2")
> tabela

x x^2 z z^2 x*z x^3 z^3 x^2*z x*z^2
Verdadeiro 1   1 1   0   1   0   0     0     0
Bootstrap  1   1 1   0   1   0   0     1     0
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