
Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 1

Estatística Computacional I

Lupércio França Bessegato
Dep. de Estatística/UFJF

Roteiro Geral
1. Programando em R
2. Preparação, limpeza e manipulação de dados
3. Gráficos em R
4. Tópicos especiais
5. Referências

2
Estatística Computacional I - 2020

Programando em R Codificação

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 2

Debbuging
• Em geral, cometemos erros na construção

de códigos com muitas funções
• Exemplos:

 Mensagem de erro
 Aviso:

– Não ignore!
 Sinal de que algo não funciona como pretendido

Estatística Computacional I - 2020
256

> "a" + 1
Error in "a" + 1 : argumento não-numérico para operador binário

> 1:3 + 1:2
[1] 2 4 4
Warning message:
In 1:3 + 1:2 :
comprimento do objeto maior não é múltiplo do comprimento do objeto menor

Prevenção de Erros
• Construa seu código em módulos

 Não se repita
– Crie funções para executar tarefas específicas e

as execute quando necessário
– Use o mesmo código, caso necessite realizar a

mesma tarefa várias vezes
– É mais fácil detectar e corrigir quaisquer erros.

Estatística Computacional I - 2020
257

Estatística Computacional I - 2020
258

• Sempre que possível escreva seu código
de maneira simplificada
 Aproveite os recursos incorporados no R que

permitem que códigos complicados sejam
escritos de maneira muito sucinta e clara

– Ex.: família apply
 Aprenda esses recursos e tente aplicá-los

sempre

Estatística Computacional I - 2020
259

• Comente seu código
 Para qualquer pessoa entender o que ele

pretende fazer
– Muitas vezes será você quem se esquecerá do que

estava fazendo quando o escreveu
 Dê nomes descritivos para as variáveis e

funções
– Contextualizados ao problema

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 3

Estatística Computacional I - 2020
260

• Pense sempre nos casos especiais
 Por exemplo, um erro comum é não pensar

sobre o que acontecerá quando sua entrada
for de comprimento 1 ou 0

> # Função para somar subconjunto de colunas de uma matriz
> soma.linhas <- function(x, cols){
+ apply(x[, cols], 1, sum)
+ }
> (x <- matrix(1:9, ncol = 3))

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> soma.linhas(x, 2:3)
[1] 11 13 15
> soma.linhas(x, 2)]
Erro: ']' inesperado in "soma.linhas(x, 2)]"
> dim(x[, 2])
NULL
> is.vector(x[, 2])
[1] TRUE

Estatística Computacional I - 2020
261

 Solução:
– drop = FALSE

 As dimensões do objeto são mantidas
> # solução - argumento drop
> soma.linhas <- function(x, cols){
+ apply(x[, cols, drop = FALSE], 1, sum)
+ }
> soma.linhas(x, 2)
[1] 4 5 6
> soma.linhas(x, 2:3)
[1] 11 13 15
> x[, 2]
[1] 4 5 6
> x[, 2, drop = FALSE]

[,1]
[1,] 4
[2,] 5
[3,] 6

Estatística Computacional I - 2020
262

• Codificação em módulos:
 R é uma linguagem funcional

– As operações são realizadas por funções, que
geralmente são independentes

 É boa prática manter seu código modular:
– Ser composto de funções distintas que executam

pequenas tarefas
– É possível testá-las (e depurá-las) individualmente

 Instrução complexa que não funciona:
– Divida-a em partes e verifique se cada uma delas

está fazendo o que você pretende

Estatística Computacional I - 2020
263

 Exemplo:
> # modularidade
> x <- matrix(1:9, ncol = 3)
> y <- NULL
> if(any(x > 3) && y != 2){
+ print("Passei por aqui")
+ }
Error in if (any(x > 3) && y != 2) { :
valor ausente onde TRUE/FALSE necessário

> any(x > 3)
[1] TRUE
> y != 2
logical(0)
> y
NULL

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 4

Estatística Computacional I - 2020
264

 Redução da complexidade de códigos mais
complicados:

– Escrever funções separadas, responsáveis por
parcelas de seu programa

– Testá-las separadamente com relação a resultados
e erros Estes podem então ser testados para erros
separadamente

– Facilita sua reutilização em outras circunstâncias

Estatística Computacional I - 2020
265

 Exemplo:
> # Exemplo
> g <- function(y){
+ if (y < 0) warning("Aviso")
+ return(y)
+ }
> h <- function(z){
+ stop("Mensagem de erro")
+ z
+ }
> f <- function(x){
+ # função que executa outras funções
+ saida = g(x) + h(x)
+ }
> f(2)
Error in h(x) : Mensagem de erro

Estatística Computacional I - 2020
266

 É relativamente fácil rastrear erros até a
função específica na qual eles ocorrem

– Mais difícil procurar problemas no código

– Pode-se corrigir a função h

– traceback não disponível para warnings

> traceback()
3: stop("Mensagem de erro") at #2
2: h(x) at #3
1: f(2)

> # correção da função h
> h = function(z){
+ z
+ }
> f(-2)
Warning message:
In g(x) : Aviso

Estatística Computacional I - 2020
267

– Pode-se transformar warning em error, com o
propósito de debugar a função

– Recomendável inserção de stop na função g

> options(warn = 2)
> f(-2)
Error in g(x) : (convertido do aviso) Aviso
> traceback()
7: doWithOneRestart(return(expr), restart)
6: withOneRestart(expr, restarts[[1L]])
5: withRestarts({

.Internal(.signalCondition(simpleWarning(msg, call), msg,
call))

.Internal(.dfltWarn(msg, call))
}, muffleWarning = function() NULL)

4: .signalSimpleWarning("Aviso", quote(g(x)))
3: warning("Aviso") at #2
2: g(x) at #3
1: f(-2)

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 5

Estatística Computacional I - 2020
268

 options(error = recover)
– Se ocorrer erro durante execução de função, serão

mostradas as linhas executadas
– Escolhida a linha, pode-se inspecionar objetos

dentro do comando selecionado
– Digite Q para sair do browser

 options(error = NULL)
– Retorna ao modo normal de trabalho

Estatística Computacional I - 2020
269

 Execução:
> # Recuperação de erro
> options(error = recover)
> f(-2)
Error in g(x) : (convertido do aviso) Aviso
Enter a frame number, or 0 to exit
1: f(-2)
2: #3: g(x)
3: #2: warning("Aviso")
4: .signalSimpleWarning("Aviso", quote(g(x)))
5: withRestarts({

.Internal(.signalCondition(simpleWarning(msg, call), msg
6: withOneRestart(expr, restarts[[1]])
7: doWithOneRestart(return(expr), restart)
Selection: 3
Called from: withOneRestart(expr, restarts[[1L]])
Browse[1]> stop("Escolha novo valor, que deve ser >=0")
Erros durante o embrulho: Escolha novo valor, que deve ser >=0
Browse[1]> Q
>
> options(error = NULL)

Estatística Computacional I - 2020
270

 Comando debug:
– Inspeciona a execução de cada linha da função
– Digitando ENTER se passa de linha em linha
– Digite Q para sair do browser

 Comando undebug
– Retorna ao modo normal de trabalho

> debug(g)
> f(2)
debugging in: g(x)
debug em <tmp>#1: {

if (y < 0)
warning("Aviso")

return(y)
}
Browse[2]>
debug em <tmp>#2: if (y < 0) warning("Aviso")
Browse[2]>
debug em <tmp>#3: return(y)
Browse[2]> Q
> undebug(g)

Estatística Computacional I - 2020
271

 Comando trace:
– Permite edição temporária da função

 Alterações não são permanentes
– Use print para facilitar a verificação

 Comando untrace
– Reverte para a função original

> untrace(g)
> # Comando trace
> trace(g, edit = TRUE)
[1] "g"
> untrace(g)

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 6

Referências

Bibliografia Recomendada

• ALBERT, J.; RIZZO, M. R by Example. Springer, 2012.
• CHRISTIAN, N. Basic Programming, Lecture Notes
• DALGAARD, P. Introductory statistics with R.

Springer, 2008.
• KLEIBER, C.; ZEILEIS, A. Applied econometrics with
R. Springer, 2008.

• GARDENER, M. Beginning R: The statistical
programming language. John Wiley & Sons, 2012.

287
Estatística Computacional I - 2020

