
Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 1

Estatística Computacional I

Lupércio França Bessegato
Dep. de Estatística/UFJF

Roteiro Geral
1. Programando em R
2. Preparação, limpeza e manipulação de dados
3. Gráficos em R
4. Tópicos especiais
5. Referências

2
Estatística Computacional I - 2020

Programando em R Funções

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 2

Funções
• Objetos que avaliam múltiplas expressões,

usando argumentos
 Em geral, têm como saída um objeto

• Sintaxe:
nome.função<- function(argumentos){

conjunto de comandos da função
}

 Argumentos separados por vírgula
– argumentoi, ou
– argumentoi = valor default

Estatística Computacional I - 2020
196

Estatística Computacional I - 2020
197

• Comentários:
 As chaves são opcionais, se o conjunto de

funções for uma única expressão
 Ao denominar as funções tenha cuidado para

não sobrescrever as funções internas do R
 tenha cuidado com as funções de

nomenclatura, pode sobrescrever as funções
R existentes!

 Uma função funciona como qualquer outro
objeto

– Pode ser usada como argumento de outras funções

Estatística Computacional I - 2020
198

 Use # para inserir anotações em sua função
 Se você digitar o nome de sua função, você

verá o código da função.
 Usar o comando args para visualizar os

argumentos requeridos para sua função ():

Estatística Computacional I - 2020
199

• Exemplo – 2ª. Lei de Ohm
> # Exemplo - resistencia elétrica
> # função - área em m2, comprimento em m e ro em ohm . m
> # ro para o cobre: 1.72e-8 ohm . m
> resistencia <- function(ele, area, ro = 1.72E-8) ele/area * ro
> # cabo de cobre com 80m, 0,5 mm2
> resistencia(80, 0.5E-6)
[1] 2.752
> resistencia(0.5E-6, 80)
[1] 1.075e-16
> resistencia(area = 0.5E-6, ele = 80)
[1] 2.752
> # resistencia - área em mm2 e condutividade e-8
> resistencia <- function(ele, area, ro = 1.72E-8) ele/area * ro * 1E6
> resistencia(80, 0.5)
[1] 2.752
>
> # resistencia - compimento em m, área em mm2 e condutividade e-8 ohm.m
> resistencia <- function(ele = 1, area = 1, ro = 1.72) ele/area * ro
> resistencia()
[1] 1.72

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 3

Estatística Computacional I - 2020
200

 Resistência é vetorizada
> # resistencia é vetorizada
> # 80 m de cabo, com 0.5 mm2, para cobre e outro material
> resistencia(80, 0.5, ro = c(1.72, 6.25))
[1] 2.752 10.000
> # 80m de cobre com seções 1 e 0.5 mm2
> resistencia(80, a = c(1, 0.5))
[1] 1.376 2.752
> # 80 m de cabo de cobre com 1 mm2 e de outro material com 0.5mm2
> resistencia(80, a = c(1, 0.5), ro = c(1.72, 6.25))
[1] 1.376 10.000

Estatística Computacional I - 2020
201

• Exemplo – mediana acumulada
> # Exemplo - mediana acumulada
> # função para cálculo da mediana acumulada
> mediana.acum <- function(vet) {
+ # Cálculo de mediana média de vetor
+ # vet: vetor com observações
+ sapply(seq_along(vet), function(x) median(vet[1:x]))
+ }
> # amostra exponencial (é assimétrica)
> set.seed(666)
> amostra <- rexp(30)
> mediana.acum(amostra)
[1] 0.5487370 1.2564124 0.5487370 0.3441432 0.5487370 0.5502616 0.5517862
[8] 1.0376944 1.5236027 1.0730578 1.5236027 1.0730578 0.6225129 0.6176420
[15] 0.6225129 0.6912014 0.6225129 0.6176420 0.6127711 0.6110223 0.6092735
[22] 0.5805298 0.6092735 0.5805298 0.6092735 0.5805298 0.5517862 0.5502616
[29] 0.5487370 0.5205005
> medianas <- mediana.acum(amostra)
> (medias <- cumsum(amostra) / seq_along(amostra))
[1] 0.5487370 1.2564124 0.8841248 0.6654010 0.6426781 1.1212309 1.3341062
[8] 1.3577933 1.4375167 1.3560164 1.5002057 1.4021441 1.2963314 1.2475056
[15] 1.2149979 1.3352515 1.2699043 1.2052816 1.1563514 1.1289975 1.0760831
[22] 1.0394352 1.0328215 0.9947037 1.0136499 0.9847223 0.9561155 0.9228395
[29] 0.8926699 0.8793230

– Comparação com as médias acumuladas:

 Médias são afetadas por
valores extremos.

 Qual a mediana de uma
distribuição exponencial com
média 1?

Estatística Computacional I - 2020
202

> # Gráfico comparativo medianas e médias
> plot(amostra, type = "l")
> lines(medianas, lty = 2, lwd = 2, col = "blue")
> lines(medias.acum, lty = 3, lwd = 2, col = "red")

Estatística Computacional I - 2020
203

• Comando args:
 Visualização dos argumentos necessários

para sua função:
> # comando args
> args(resistencia)
function (ele, area = 0.5, ro = 1.72)
NULL
> args(mediana.acum)
function (vet)
NULL

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 4

Armazenamento de Objetos
• Comandos save e load:

 Armazenamento em arquivo binário:

Estatística Computacional I - 2020
204

> # armazenamento de objetos - binário
> save(resistencia, mediana.acum, amostra, file = "minhas-bin.R")
> # carregamento de objetos binários armazenados
> load("minhas-bin.R")
> # tamanho do arquivo
> file.size("minhas-bin.R")
[1] 3457
> # tamanho de objetos
> object.size(mediana.acum)
6496 bytes
> #todos os objetos
> ls()
[1] "amostra" "mediana.acum“ "medianas" "medias"
[4] "resistencia"

Estatística Computacional I - 2020
205

• Comandos dump e source:
 Armazenamento em arquivo texto:

> # armazenamento de objetos - texto
> dump(c("resistencia", "mediana.acum", "amostra"), file = "minhas-
texto.R")
> # armazena objetos com padrão de nomes
> dump(ls(pattern = "mediana|amostra|resistencia"), file = "minhas-texto-
2.R")
> # Acrescenta objetos no arquivo
> amostra2 <- 1:100
> dump("amostra2", file = "minhas-texto.R", append = TRUE)
> # carregamento arquivo texto de objetos
> source("minhas-texto.R")
> file.size("minhas-texto.R")
> # alternativa para carregamento
> source(file.choose())
[1] 842
> # deleta arquivo
> unlink("minhas-texto-2.R")

Estatística Computacional I - 2020
206

• Exemplo – Razão de chances
 Razão de chance de tabela de contingência 2x2

 Razão de chances amostral:
 Erro padrão assintótico para log መߠ :

 Intervalo de confiança assintótico para log :ߠ
– Exponenciam-se os limites para se obter IC para ߠ

Doença
Sim Não

Gr
upo Tratamento a b
Controle c d

Estatística Computacional I - 2020
207

 Função para cálculo de IC para :ߠ
função para cálculo de IC para theta
razao <- function(X, nivel = 0.95) {

Calcula a razão de chances de tabela 2x2 e
o intervalo de confiança assintótico para a razão de chances
Argumentos:
X = matriz 2x2
nivel = nível de confiança
Adaptado de Christian, N. "Basic Programming-Lecture 3"
--
RC <- (X[1, 1]* X[2, 2])/(X[1, 2]*X[2, 1])
ep.logRC <- sqrt(sum(1/X))
alfa <- 1 - nivel
IC.inf <- exp(log(RC) - qnorm(1 - alfa/2) * ep.logRC)
IC.sup <- exp(log(RC) + qnorm(1 - alfa/2) * ep.logRC)
cat("Razão de chances = ", RC, "\n",

"Intervalo com", nivel*100, "% de confiança = (",
IC.inf, "; ", IC.sup, ")\n", sep="")

}

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 5

Estatística Computacional I - 2020
208

 Tabela de resultados de estudo

 Cálculo do Intervalo de confiança

> # resultado de estudo
> tabela <- matrix(c(189, 104, 10845, 10933), nrow = 2,
+ dimnames = list("Grupos" = c("Placebo", "Aspirina"),
+ "Infarto do Miocárdio" = c("Sim", "Não")))
> tabela

Infarto do Miocárdio
Grupos Sim Não
Placebo 189 10845
Aspirina 104 10933

> razao(tabela)
Razão de chances = 1.832054
Intervalo com 95% de confiança = (1.440042, 2.33078)
> # intervalo com 99% de confiança
> razao(tabela, nivel = 0.99)
Razão de chances = 1.832054
Intervalo com 99% de confiança = (1.335117, 2.513954)
> # intervalo com 90% de confiança
> razao(tabela, nivel = 0.90)
Razão de chances = 1.832054
Intervalo com 90% de confiança = (1.496877, 2.242282)

Objetos de Saída
• Em geral, desejamos que a função gere

objeto que possa ser utilizado
 Comandos: return e invisible
 return: imprime e retorna seus argumentos
 invisible: retorna valores, mas não

imprime
 Usar uma lista para retornar vários objetos
 Se não houver return na função, será

retornado o valor da última expressão avaliada
Estatística Computacional I - 2020

209

Estatística Computacional I - 2020
210

• Função com saída de objetos
função da razão de chances com objeto na saída
razao <- function(X, nivel = 0.95) {

Calcula a razão de chances de tabela 2x2 e ...
...
Adaptado de Christian, N. "Basic Programming-Lecture 3"
--
RC <- (X[1, 1]* X[2, 2])/(X[1, 2]*X[2, 1])
ep.logRC <- sqrt(sum(1/X))
alfa <- 1 - nivel
IC.inf <- exp(log(RC) - qnorm(1 - alfa/2) * ep.logRC)
IC.sup <- exp(log(RC) + qnorm(1 - alfa/2) * ep.logRC)
cat("Razão de chances = ", RC, "\n",

"Intervalo com ", nivel*100, "% de confiança = (",
IC.inf, ", ", IC.sup, ")\n", sep="")

diferentes abordagens de saída de objeto
RC
#return(RC)
#invisible(RC)
saida <- list(RChance = RC, IC = c(IC.inf, IC.sup), confianca = nivel)
return(saida)

}

Acrescentar ao código anterior

Estatística Computacional I - 2020
211

 Execução da função e criação de objeto:
> # resultados da função como objeto
> razao.obj <- razao(tabela)
Razão de chances = 1.832054
Intervalo com 95% de confiança = (1.440042, 2.33078)
> razao.obj$RC
[1] 1.832054
> razao.obj$IC
[1] 1.440042 2.330780
> razao.obj$confianca
[1] 0.95

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 6

Estatística Computacional I - 2020
212

 Para imprimir texto, use os comandos cat ou
print

 cat:
– Válido apenas para nomes e vetores (lógicos,

inteiros, reais, complexos, caracteres).
– Na prática, converte argumentos em caracteres e

concatena
– Pode ser usado para redirecionar saída para arquivo

 print:
– É função genérica que pode ser definida em

implementação específica

Estatística Computacional I - 2020 213

 Comando cat:
> # concatena e não pula linha
> cat("a","b","c")
a b c>
> # concatena e separa com espaço
> cat("a", "b", "c", fill = TRUE)
a b c
> # adiciona linha
> cat("a","b","c","\n")
a b c
> # especifica largura da string para inserção de nova linha
> cat("a", "b", "c", fill = 2)
a
b
c
> cat("a", "b", "c", fill = 2, sep = "")
ab
c
> cat("a", "b", "c", fill = 2)
a
b
c
> # separa argumentos com outro separador
> cat("a", "b", "c", sep = "/", fill = TRUE)
a/b/c

Estatística Computacional I - 2020 214

 Comando cat – continuação:
> # imprime direto em arquivo
> cat('"Pacotes"', '"Estatísticos"', file = "arquivo.txt", sep = "\n")
> # grava incrementalmente no arquivo
> cat('"PACOTES"', file = "arquivo.txt", append = TRUE)
> cat('"ESTATÍSTICOS"', file = "arquivo.txt", append = TRUE)

Estatística Computacional I - 2020 215

 Comando print:
> # print
> a <- "Essa é uma string"
> b <- print(paste(a, 1))
[1] "Essa é uma string 1"
> # sem aspas
> print(b, quote = FALSE)
[1] Essa é uma string 1
> # qte de digitos a ser apresentada
> c <- 10.4678
> print(c, digits = 3)
[1] 10.5
> # em número, NA pode ser impresso com valor especial
> d <- c(1, 2, NA, 4, NA, 6, 7)
> print(d, na.print = "-999")
[1] 1 2 -999 4 -999 6 7
> # Strings podem ser alinhadas à direita
> f <- c("um", "dois", "três")
> print(f)
[1] "um" "dois" "três"
> print(f, right = TRUE)
[1] "um" "dois" "três"

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 7

Estatística Computacional I - 2020 216

 Comando print – data frames:
> # print data frames
> df <- data.frame(a = c(1, 2, 3, 4, 5), b = c('a', 'b', 'c', 'd', 'e'),
+ c= c(10L, 20L, 30L, 40L, 50L))
> print(df)
a b c

1 1 a 10
2 2 b 20
3 3 c 30
4 4 d 40
5 5 e 50
> print(df, row.names = F)
a b c
1 a 10
2 b 20
3 c 30
4 d 40
5 e 50
> # imprimindo em um arquivo
> sink("saída.txt")
> print(df)
> sink()

Estatística Computacional I - 2020
218

• Cálculo de estatística genérica acumulada

 ...: permite a introdução de outras
instruções do comando em fun

 substitute: retorna a expressão
 deparse: transforma expressão em string

Generalização de estatística acumulada
fun.acum <- function(vet, fun = median, ...) {

Cálculo de mediana média de vetor
vet: vetor com observações
fun: comando que se deseja acumular
fun: função a ser aplicada
Adaptado de Gardener, M. Beginning R: The statistical programming
language. John Wiley & Sons, 2012.

saida <- sapply(seq_along(vet), function(x) fun(vet[1:x]))
cat('\n', deparse(substitute(fun)),'de', deparse(substitute(vet)),'\n')
print(saida)

} # Fim

Estatística Computacional I - 2020 219

 Resultados de fun.acum:
> fun.acum(amostra)
median de amostra
[1] 0.5487370 1.2564124 0.5487370 0.3441432 0.5487370 0.5502616 0.5517862
[8] 1.0376944 1.5236027 1.0730578 1.5236027 1.0730578 0.6225129 0.6176420
[15] 0.6225129 0.6912014 0.6225129 0.6176420 0.6127711 0.6110223 0.6092735
[22] 0.5805298 0.6092735 0.5805298 0.6092735 0.5805298 0.5517862 0.5502616
[29] 0.5487370 0.5205005
> fun.acum(amostra, mean, na.rm = T)
mean de amostra
[1] 0.5487370 1.2564124 0.8841248 0.6654010 0.6426781 1.1212309 1.3341062
[8] 1.3577933 1.4375167 1.3560164 1.5002057 1.4021441 1.2963314 1.2475056
[15] 1.2149979 1.3352515 1.2699043 1.2052816 1.1563514 1.1289975 1.0760831
[22] 1.0394352 1.0328215 0.9947037 1.0136499 0.9847223 0.9561155 0.9228395
[29] 0.8926699 0.8793230
> # desvio padrão acumulada
> fun.acum(amostra, fun = sd)
> # produtorio acumulado
> Out <- fun.acum(amostra, fun = prod)
> out
> prod(amostra)

Estatística Computacional I - 2020
220

• Mensagem e aguarda ação de usuário

 eval: avalia a expressão
 parse: transforma string em expressão

Mostra mensagem e aguarda usuário - estatística acumulada
fun.acum.usr <- function(vet) {

--
Cálculo de mediana média de vetor
vet: vetor com observações
--
fun: função a ser aplicada

nome <- readline(prompt = "Que função você quer aplicar?: ")
transforma string em comando

fun <- eval(parse(text = nome))
calcula estatística acumulada

saida <- sapply(seq_along(vet), function(x) fun(vet[1:x]))
cat('\n', nome,'de', deparse(substitute(vet)),'\n')
print(saida)

} # Fim

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 8

Verificação de Argumentos
• Pode ser necessário verificar se os

argumentos apropriados foram inseridos
 Quando valor de argumento não for válido:

– Parada na execução e mensagem de erro.

Estatística Computacional I - 2020
221

Estatística Computacional I - 2020
222

• Comandos:
 missing:

– testa se valor foi especificado como argumento da
função

– TRUE: valor não foi especificado
 stop:

– Parar a execução e imprime mensagem de erro
 warning:

– Gera mensagem de aviso
 message:

– Gera mensagem de diagnóstico

Estatística Computacional I - 2020
223

 stopifnot:
– Se algum dos argumentos não for TRUE, então

comando stop é executado
– É produzida uma mensagem de erro, indicando o

primeiro elemento da lista de argumentos que nãofor TRUE
– Comando stop permite que seja fornecido uma

mensagem informativa de erro
– Comando stopifnot requer codificação menor

Estatística Computacional I - 2020
224

• Função com mensagens de erro e de aviso
função da razão de chances com mensagem de avisos
razao <- function(X, nivel = 0.95) {

--
Verificação dos argumentos

stopifnot(!missing(X), is.matrix(X), dim(X) == c(2,2), X>0)
Mensagem se quantidade esperada de qqer célula < 5

qte.esp <- (apply(X, 1, sum) %o% apply(X, 2, sum))/sum(X)
if(any(qte.esp < 5)) warning("Qte esperada de célula < 5")

Calcula razão de chances e IC assintotico
RC <- (X[1, 1]* X[2, 2])/(X[1, 2]*X[2, 1])
ep.logRC <- sqrt(sum(1/X))
alfa <- 1 - nivel
IC.inf <- exp(log(RC) - qnorm(1 - alfa/2) * ep.logRC)
IC.sup <- exp(log(RC) + qnorm(1 - alfa/2) * ep.logRC)
cat("Razão de chances = ", RC, "\n",

"Intervalo com ", nivel*100, "% de confiança = (",
IC.inf, ", ", IC.sup, ")\n", sep="")

diferentes abordagens de saída de objeto
RC
#return(RC)
#invisible(RC)
saida <- list(RChance = RC, IC = c(IC.inf, IC.sup), confianca = nivel)
return(saida)

}

Acrescentar ao código anterior

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 9

Estatística Computacional I - 2020 225

 Operador %o%:
– Produto entre vetores

> # produto entre vetores
> 1:3 %o% 1:3

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
> # tabela - contagens marginais
> apply(tabela, 1, sum)
Placebo Aspirina

11034 1103
> apply(tabela, 2, sum)
Sim Não
293 21778

> # Quantidade esperada por célula
> (apply(tabela, 1, sum) %o% apply(tabela, 2, sum))/sum(tabela)

Sim Não
Placebo 146.4801 10887.52
Aspirina 146.5199 10890.48
> sum((apply(tabela, 1, sum) %o% apply(tabela, 2, sum))/sum(tabela))
[1] 22071

Estatística Computacional I - 2020 226

 Resultados da função razao:
> razao(tabela)
Razão de chances = 1.832054
Intervalo com 95% de confiança = (1.440042, 2.33078)
$RChance
[1] 1.832054
$IC
[1] 1.440042 2.330780
$confianca
[1] 0.95
> # célula como contagem zerada
> Y <- matrix(c(0, 104, 10845, 10933), nrow = 2,
+ dimnames = list("Grupos" = c("Placebo", "Aspirina"),
+ "Infarto do Miocárdio" = c("Sim", "Não")))
> Y

Infarto do Miocárdio
Grupos Sim Não
Placebo 0 10845
Aspirina 104 10933

> razao(Y)
Erro: X > 0 are not all TRUE

Estatística Computacional I - 2020 227

 Resultados da função razao:
– Valor esperado de célula < 5

> # valor esperado de célula < 5
> Z <- matrix(c(1, 9, 4, 95 -9), nrow = 2,
+ dimnames = list("Grupo" = c("Controle", "Tratamento"),
+ "Doença" = c("Sim", "Não")))
> Z

Doença
Grupo Sim Não
Controle 1 4
Tratamento 9 86

> qte.esp <- (apply(Z, 1, sum) %o% apply(Z, 2, sum))/sum(Z)
> qte.esp

Sim Não
Controle 0.5 4.5
Tratamento 9.5 85.5
> razao(Z)
Razão de chances = 2.388889
Intervalo com 95% de confiança = (0.240378, 23.7409)

Comando source

• Carregamento de objetos criados pelo
usuário

Estatística Computacional I - 2020
228

> # Armazenamento de objetos dessa sessão (parcial)
> dump(c("tabela", "razao"), file = "minhas-texto.R", append = T)
> # Remoção de todos os objetos
> rm(list = ls())
> # Carregamento dos objetos
> source("minhas-texto.R")
> # objetos ativos
> ls()
[1] "amostra" "amostra2" "mediana.acum" "razao" "resistencia"
[6] "tabela"

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 10

Anotações
• Anote a função de maneira que consiga

lembrar-se o que está acontecendo
 O nome dos objetos deve facilitar o

entendimento de seu código

Estatística Computacional I - 2020
229

Estatística Computacional I - 2020 230

 Exemplo – barplot com barras de erros:
> # anotações
> # Barplot com barras de erro.
> # Adaptado de Gardener, M. Beginning R: The statistical programming language.
> # John Wiley & Sons, 2012.
> # dados: denominação do conjunto de interesse
> dados <- iris[-5]
> # Cálculos por coluna
> # médias
> media <- apply(dados, 2, mean, na.rm = TRUE)
> # desvios padrão
> dp <- apply(dados, 2, sd, na.rm = TRUE)
> # soma
> tot <- apply(dados, 2, sum, na.rm = TRUE)
> # Cálculo qte. de observações (length não aceita na.rm=T).
> n <- media/tot
> # Cálculo dos erros padrão
> ep <- dp/sqrt(n)
> # maior valor para escala de y
> max.y <- round(max(media + ep) + 0.5, 0)
> # Constroi gráfico e a escala do eixo y
> bp <- barplot(media, ylim = c(0,max.y))
> # adiciona barras dos erros
> arrows(bp, media + ep, bp, media - ep, length = 0.1, angle = 90, code = 3)
> # Se o eixo y ainda é pequeno, mude max.y para um valor maior
> # Fim

– Exemplo com dados = íris[–5]:

 O que você gostaria de
aprimorar no gráfico?

 Como criar uma função para
executar esse código para
qualquer conjunto de dados?

Estatística Computacional I - 2020
231

Funções bem Definidas
• Uma função é bem definida:

 Quando valor retornado pela função é
completamente determinado pelos
argumentos da função.

– Ex.: Não são necessárias variáveis globais para
avaliar a função.

 Não afeta cálculos posteriores
– Ex.: usar options que é um comando que

altera configurações globais

Estatística Computacional I - 2020
232

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 11

Estatística Computacional I - 2020
233

 Tem o código comentado
– Funções que são transparentes e bem

documentadas código são mais confiáveis.
 Em geral, a primeira versão de uma função é

para uso imediato.
– Posteriormente é possível refiná-la.

Estatística Computacional I - 2020
234

• Exemplo – Log-verossimilhança
> # Escrevendo funções confiáveis
>
> # armazena os defaults correntes
> defaults <- options()
> # função para cálculo da logverossimilhança
> logVeros.exp_ok <- function(lambda){
+ options(digits = 3)
+ LV <- sum(log(dexp(x, rate = lambda)))
+ LV
+ }
> # amostra exponencial, com lambda = 3, de tamanho 100
> x <- rexp(100, rate = 3)
> # x não está definido como argumento da função
> logVeros.exp_ok(3)
[1] 20.7
> # variância definida com muitos algarismos significativos .
> signif(var(x), 7)
[1] 0.0737
> # restaura os defaults
> options(defaults)

Estatística Computacional I - 2020
235

• Exemplo – Log-verossimilhança
 Função melhor escrita

> # Função para fornecer LV com 3 dígitos
> logVeros.exp_melhor <- function(x, theta){
+ LL <- sum(log(dexp(x, rate=theta)))
+ print(LL, digits=3)
+ }
> # Não está restrita aos vetores denominados x
> logVeros.exp_melhor(x, 3)
[1] 20.7

Extração de Componentes da
Função

Estatística Computacional I - 2020
236

Comando Descrição
body Obtém ou define o corpo de função
formals Obtém ou define os argumentos formais de função
args Exibe os nomes dos argumentos de função e seus

correspondentes defaults
nargs Fornece o número de argumentos fornecidos à função

(usado dentro da função)
match.call Executa função com todos seus argumentos

especificados por seus nomes completos (usado dentro
da função)

update Atualiza modelo ajustado

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 12

Estatística Computacional I - 2020
237

• Argumentos formais de função:
 Argumentos incluídos na definição da função
 Comando formals:

– Retorna lista com argumentos formais de função
> formals(lm)
$formula
$data
$subset
$weights
$na.action
$method
[1] "qr"
$model
[1] TRUE

$x
[1] FALSE
$y
[1] FALSE
$qr
[1] TRUE
$singular.ok
[1] TRUE
$contrasts
NULL
$offset
$...

Estatística Computacional I - 2020
238

 Comando args:
– Exibe os nomes dos argumentos e valores default

correspondentes de função
> args(lm)
function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)

NULL

Estatística Computacional I - 2020
239

 Comando body:
– Código da função

> body(lm)
{

ret.x <- x
ret.y <- y
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- quote(stats::model.frame)
mf <- eval(mf, parent.frame())
if (method == "model.frame")

return(mf)
else if (method != "qr")

warning(gettextf("method = '%s' is not supported. Using 'qr'",
method), domain = NA)

mt <- attr(mf, "terms")
y <- model.response(mf, "numeric")
...

}

Estatística Computacional I - 2020
240

 Comando body – Exemplo:
– Permite também atribuição de código

> # exemplo
> f <- function(x) { x^5 }
> body(f)
{

x^5
}
> f(8)
[1] 32768
> # pode-se atribuir função com comando body
> e <- expression(y <- x^2, return(y))
> body(f) <- as.call(c(as.name("{"), e))
> body(f)
{

y <- x^2
return(y)

}
> f(8)
[1] 64

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 13

Estatística Computacional I - 2020
241

 Comando nargs:
– Exibe número de argumentos fornecidos
– Atua no código da função

> # commando nargs
> fun <- function(x = 1, y = 2, z = FALSE, ...) {nargs()}
> fun()
[1] 0
> fun(2, 3)
[1] 2
> fun(w)
[1] 1
> fun(2, 3, TRUE, w)
[1] 4

Estatística Computacional I - 2020
242

 Capturando a execução da função
– sys.call: Exibe o que o usuário digitou
– match.call: exibe apenas os argumentos

> # comando match.call e sys.call
> funcao <- function(abc = 1, def = 2, ghi = 3) {
+ list(sys = sys.call(), match = match.call())
+ }
> funcao(d = 2, 2)
$sys
funcao(d = 2, 2)
$match
funcao(abc = 2, def = 2)

Estatística Computacional I - 2020
243

 Comando update:
– Reajusta modelo, modificando argumentos

> mod <- lm(mpg ~ wt, data = mtcars)
> mod
Call:
lm(formula = mpg ~ wt, data = mtcars)
Coefficients:
(Intercept) wt

37.285 -5.344
> update(mod, formula = . ~ . + cyl)
Call:
lm(formula = mpg ~ wt + cyl, data = mtcars)
Coefficients:
(Intercept) wt cyl

39.686 -3.191 -1.508
> update(mod, formula = . ~ . + cyl - wt)
Call:
lm(formula = mpg ~ cyl, data = mtcars)
Coefficients:
(Intercept) cyl

37.885 -2.876

Estatística Computacional I - 2020
244

 Comandos edit e fix:
– fix: edita objeto e atribui nova versão a ele mesmo
– edit: necessário atribuir nova versão a um objeto

> # comandos edit e fix
> source("minhas-texto.R")
> fix(tabela)
> tabela

Sim Não
Placebo 109 10845
Aspirina 104 10933
> source("minhas-texto.R")
> tabela.new <- edit(tabela) # reescrever valor de 189
> tabela <- tabela.new
> rm(tabela, tabela.new)
> source("minhas-texto.R")
> tabela
Infarto do Miocárdio
Grupos Sim Não
Placebo 189 10845
Aspirina 104 10933

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 14

Função Recursiva
• Função que executa a si mesmo
• Recursão

 Técnica que divide problema em
subproblemas menores e mais simples

Estatística Computacional I - 2020
245

Estatística Computacional I - 2020
246

 Exemplo – fatorial:
> # Exemplo - fatorial
> fatorial <- function(n){
+ if(n == 1) {
+ 1
+ } else {
+ n * fatorial(n-1)
+ }
+ }
> fatorial(10)
[1] 3628800
> factorial(10)
[1] 3628800

Estatística Computacional I - 2020
247

 Exemplo – sequência de Fibonacci:

> # Exemplo - Fibonacci
> fibonacci <- function(n) {
+ # Calcula f(n)
+ if(n <= 1) {
+ return(n)
+ } else {
+ return(fibonacci(n - 1) + fibonacci(n - 2))
+ }
+ }
> fibonacci(0)
[1] 0
> fibonacci(4)
[1] 3

Estatística Computacional I - 2020
248

 Geração de sequência de ntermos:
> # Função para calcular sequencia de ntermos
> seq.fibonacci <- function() {
+ # Gera sequencia de Fibonacci com ntermos
+
+ # entrada digitada no console pelo usuário
+ ntermos <- as.integer(readline(prompt = "Quantos termos? "))
+ # verifica se quantidade de termos é válida
+ if(nterms <= 0) {
+ print("Entre um inteiro positivo")
+ } else {
+ print("Sequência de Fibonacci:")
+ for(i in 0:(ntermos - 1)) {
+ print(fibonacci(i))
+ }
+ }
+ }
> seq.fibonacci()
Quantos termos? 5
[1] "Sequência de Fibonacci:"
[1] 0
[1] 1
[1] 1
[1] 2
[1] 3

Digite no console a
quantidade de termos

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 15

Intervalo de Confiança
• Seja uma amostra aleatória X1, X2, ..., Xn,com média ݔ̅ e desvio padrão .ݏ

 Intervalo com (1 – a)100% de confiança para m

– :ሺଵିఈ/ଶሻ; ௡ିଵݐ percentil 1 െ 2/ߙ de uma t com ݊ െ 1
graus de liberdade

 Esse intervalo de confiança:
– É exato, se amostra provém de população normal
– É aproximadamente correto para qualquer

população se a mostra for grande
Estatística Computacional I - 2020

249
Estatística Computacional I - 2020

250

• Perguntas:
 Quão grande deve ser o tamanho amostral

para a aproximação ter-se uma boa
aproximação?

 Como esse tamanho amostral é afetado pela
forma da distribuição?

• Solução:
 Executar simulações para diferentes

distribuições e tamanhos amostrais

Estatística Computacional I - 2020
251

 Função para simulação de IC’s:
Função para Simulação de IC's

sim.IC.t <- function(gera.VA, n, nsim = 1000, alfa = 0.05, mi, ...){

Argumentos da função:
gera.VA - função geradora de valores aleatórios de VA
n - tamanho da amostra (pode ser um vetor)
nsim - quantidade de iterações (default: 1000)
alfa - nível de confiança 100(1 - alfa)%
mi - média populacional
... - argumentos adicionais de gera.VA
#
Adaptado de Christian, N. "Basic Programming-Lecture 3"

Verifica os argumentos da função

stopifnot(!missing(gera.VA), is.function(gera.VA), !missing(n),
!missing(mi))

Cria matriz de resultados
resultados <- matrix(nrow = length(n), ncol = 1,

dimnames = list(n, deparse(substitute(gera.VA))))
Loop para diferentes tamanhos amostrais

...
continua próximo slide

Estatística Computacional I - 2020
252

 Função para simulação de IC’s – continuação:
Continuação
...

Loop para diferentes tamanhos amostrais
for(i in seq_along(n)) {

CP <- array(dim = nsim)
Loop de simulação

for(j in 1:nsim) {
Gera amostra aleatória

x <- gera.VA(n[i], ...)
Calcula Intervalo de Confiança t

xbarra <- mean(x)
inferior <- xbarra - qt(1-alfa/2, n[i]-1)*sd(x)/sqrt(n[i])
superior <- xbarra + qt(1-alfa/2, n[i]-1)*sd(x)/sqrt(n[i])
CP[j] <- ifelse(inferior < mi & mi < superior, 1, 0)

}
resultados[i,] <- mean(CP)

} # end for
return(resultados)

} # end function

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 16

Estatística Computacional I - 2020
253

 Exemplo de simulação:
> set.seed(666)
> sim.IC.t(rnorm, n = c(10, 25, 50, 100), mi = 0, mean = 0)

rnorm
10 0.953
25 0.953
50 0.954
100 0.952
> sim.IC.t(rexp, n = c(10, 25, 50, 100), mi = 1, rate = 1)

rexp
10 0.908
25 0.920
50 0.940
100 0.940

Estatística Computacional I - 2020
254

 Comparação entre distribuições:
> # Aplica função a distribuição normal, uniforme e gama
> set.seed(666)
> startTime <- proc.time()[3]
> corrida1 <- sim.IC.t(rnorm, n = c(10, 25, 50, 100), mi = 0, mean = 0)
> corrida2 <- sim.IC.t(runif, n = c(10, 25, 50, 100), mi = 0.5, min = 0, max =
1)
> corrida3 <- sim.IC.t(rgamma, n = c(10, 25, 50, 100), mi = 2, shape = 1,
scale = 2)
> cbind(corrida1, corrida2, corrida3)

rnorm runif rgamma
10 0.953 0.934 0.884
25 0.953 0.946 0.925
50 0.954 0.956 0.935
100 0.952 0.946 0.942
> tempoDecor <- proc.time()[3] - startTime
> cat("Tempo decorrido:", floor(tempoDecor/60), "min", tempoDecor%%60, "seg\n")
Tempo decorrido: 0 min 0.74 seg

Referências

Bibliografia Recomendada

• ALBERT, J.; RIZZO, M. R by Example. Springer, 2012.
• CHRISTIAN, N. Basic Programming, Lecture Notes
• DALGAARD, P. Introductory statistics with R.

Springer, 2008.
• KLEIBER, C.; ZEILEIS, A. Applied econometrics with
R. Springer, 2008.

• GARDENER, M. Beginning R: The statistical
programming language. John Wiley & Sons, 2012.

287
Estatística Computacional I - 2020

