
Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 1

Estatística Computacional I

Lupércio França Bessegato
Dep. de Estatística/UFJF

Roteiro Geral
1. Programando em R
2. Preparação, limpeza e manipulação de dados
3. Gráficos em R
4. Tópicos especiais
5. Referências

2
Estatística Computacional I - 2020

Programando em R Vetorização

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 2

Vetorização
• Conversão de operações repetidas com

escalares (números simples) em
operações com vetores ou matrizes.
 Exemplo:

Estatística Computacional I - 2020
164

> # exemplo
> mat <- 666
> set.seed(mat)
> xVet <- rnorm(1000)
> ene <- length(xVet)
> xNum <- xVet[-1]
> xDen <- xVet[-ene]
> sum(exp(xNum)/(xDen +10))
[1] 158.1719

Estatística Computacional I - 2020
166

• Comentários:
 Vetor é a estrutura de dados elementar no R

– Consiste em uma coleção de coisas
 Vetorização permite que muitas das

construções de loop possam ser tornadas
implícitas

– Em geral, são mais rápidas do que o código R
explícito equivalente

 O R é uma linguagem interpretada
– Todos os detalhes sobre a definição de variáveis

(tipo, tamanho, etc) são atendidos pelo intérprete
– Essas definições (tipo, estrutura, alocação, etc.)

são trabalhadas em todo comando

Estatística Computacional I - 2020
167

 Linguagens que suportam vetorização
– Toda instrução que usa um dado numérico atua

sobre um objeto que é definido como um vetor
 O formato vetorial permite utilizar rotinas de

Álgebra Linear muito eficientes

Estatística Computacional I - 2020 168

• Exemplo: Loop com for:
> # exemplo
> # loop com for
> set.seed(666);
> m <- 8; n <- 5;
> # matriz com números aleatórios (n x m)
> # m vetores de tamanho n de uma normal(0, 1)
> mat.norm <- replicate(m, rnorm(n))
> dim(mat)
[1] 5 10
> mat.norm <- data.frame(mat.norm)
> for (i in 1:n) {
+ for (j in 1:m) {
+ mat.norm[i, j] <- mat.norm[i, j] + 10*sin(0.75*pi)
+ # cat(i, j, mat.norm[i, j], "\n") # use esse comando para "ver" o loop
+ }
+ }
> mat.norm

X1 X2 X3 X4 X5 X6 X7 X8
1 7.824379 7.829464 9.221110 6.995241 6.378969 5.588793 7.826064 7.334248
2 9.085422 5.764883 5.300837 7.929368 5.888024 5.944419 6.429579 7.500286
3 6.715933 6.268548 7.935721 7.415968 8.339919 5.307225 8.502200 5.586848
4 9.099236 5.278827 5.350912 6.488615 6.758516 6.008449 6.446517 7.251076
5 4.854193 7.029035 7.205193 7.857238 7.101639 5.728069 7.300063 9.132128

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 3

Estatística Computacional I - 2020 169

 Loop usando vetorização:
> # loop vetorizado
> set.seed(666);
> m <- 8; n <- 5;
> # matriz com números aleatórios (n x m)
> # m vetores de tamanho n de uma normal(0, 1)
> mat.norm <- replicate(m, rnorm(n))
> dim(mat)
[1] 5 10
> mat.norm <- data.frame(mat.norm)
> mat.norm <- mat.norm + 10*sin(0.75*pi)
> mat.norm

X1 X2 X3 X4 X5 X6 X7 X8
1 7.824379 7.829464 9.221110 6.995241 6.378969 5.588793 7.826064 7.334248
2 9.085422 5.764883 5.300837 7.929368 5.888024 5.944419 6.429579 7.500286
3 6.715933 6.268548 7.935721 7.415968 8.339919 5.307225 8.502200 5.586848
4 9.099236 5.278827 5.350912 6.488615 6.758516 6.008449 6.446517 7.251076
5 4.854193 7.029035 7.205193 7.857238 7.101639 5.728069 7.300063 9.132128

Estatística Computacional I - 2020 170

 Tempo de execução:
– Comando system.time:

> # medida do tempo de execução do loop em for
> set.seed(666)
> m <- 5000; n <- 10
> mat.norm <- replicate(m, rnorm(n))
> mat <- data.frame(mat.norm)
> system.time(
+ for (i in 1:n) {
+ for (j in 1:m) {
+ mat[i, j] <- mat.norm[i, j] + 10*sin(0.75*pi)
+ }
+ }
+)
usuário sistema decorrido

6.47 0.00 6.50
> # medida do tempo de execução vetorizado
> system.time(
+ mat <- mat.norm + 10*sin(0.75*pi)
+)
usuário sistema decorrido

0 0 0

Comando Vectorize
• Cria uma função que vetoriza a ação de seu

argumento FUN
 Atua em funções que não são compatíveis com

vetores
• Sintaxe:

Vectorize(FUN, SIMPLIFY = TRUE,
vectorize.args = arg.names, ...)

 FUN: função a ser aplicada
 vectorizze.args: argumentos que devem

ser vetorizados
 ...: demais argumentos

Estatística Computacional I - 2020
171

X, INDEX

Estatística Computacional I - 2020 172

• Exemplo: Função para calcular a quantidade nC2:

 Quantos apertos de mãos são possíveis nos
dois casos?

> # Exemplo - quantidade nC2
> nC2 <- function(vc, ec){
+ # vc: qte. pessoas; ec: qte. apertos de mãos
+ # Calcula nC2 e retorna a razão
+ ec.max = vc * (vc-1) / 2
+ return (trunc(ec * 100 / ec.max))
+ }
> # 5 pessoas e 4 apertos
> nC2(5, 4)
[1] 40
> # 5 pessoas e 4 apertos
> nC2(5, 4)
[1] 40
> # 6 pessoas e 5 apertos
> nC2(6, 5)
[1] 33

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 4

Estatística Computacional I - 2020 173

 Cálculos com a função nC2

 Correção – retorna 0 nesses casos

> # cálculo vetorizado
> nC2(c(5,6), c(4,5))
[1] 40 33
> # 0 pessoas e 5 apertos
> nC2(0, 5)
[1] -Inf
> # 0 pessoas e nenhum aperto
> nC2(0, 0)
[1] NaN

> # Função para corrigir casos em que haja 1 ou nenhuma pessoa
> nC2 <- function(vc, ec){
+ # se não houver pessoas, retorne 0
+ if(vc <= 1) return (0)
+ # calcule nC2 e retorne a razão
+ ec.max = vc * (vc - 1) / 2
+ return (trunc(ec * 100 / ec.max))
+ }

Estatística Computacional I - 2020 174

 Cálculo da função nC2 nas duas situações

 A função nC2 corrigida não trabalha
vetorizada

> # 0 pessoas e nenhum aperto
> nC2(0, 0)
[1] 0
> # 0 pessoas e 5 apertos
> nC2(0, 5)
[1] 0
> # cálculo com vetores
nC2(c(5, 0), c(4, 5))
[[1] 40 -Inf
Warning message:
In if (vc <= 1) return(0) :
a condição tem comprimento > 1 e somente o primeiro elemento será usado

Estatística Computacional I - 2020 175

 Cálculo vetorizado da função nC2:

 Vectorize tenta vetorizar todos os
argumentos do método fornecido

– Às vezes pode não funcionar

> # Cálculo vetorizado
> Vectorize(nC2)(c(5,0), c(4,5))
[1] 40 0
> # vetorização da função
> nC2vet <- Vectorize(nC2)
> # cálculo vetorizado
> nC2vet(c(5,0), c(4,5))
[1] 40 0
> # cálculo escalar
> nC2vet(5, 4)
[1] 40

Comandos Auxiliares

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 5

Tempo de Execução
• Comando Sys.time:

 Comando simples e flexível
 Utiliza as medidas de tempo do processador

Estatística Computacional I - 2020
180

> # data e instante do sistema
> Sys.time()
[1] "2018-05-17 00:05:36 BRT“
> # medida de execução de função
> parada.30s <- function() { Sys.sleep(30) }
> inicio.comando <- Sys.time()
> parada.30s()
> fim.comando <- Sys.time()
> fim.comando - inicio.comando
Time difference of 30.06805 secs

Estatística Computacional I - 2020
181

• Comando system.time:

 elapsed: tempo de execução da função
 user: tempo da CPU na sessão do R
 system: tempo da CPU gasto pelo sistema

operacional no processamento das operações
atuais

> # Comando system.time
>
> system.time({ parada.30s() })
usuário sistema decorrido

0.00 0.02 30.24

Estatística Computacional I - 2020
182

• Pacote tictoc:
 Exemplo:

> library(tictoc)
> tic("modo soneca")
> print("dormindo ...")
[1] "dormindo ..."
> parada.30s()
> print("... acordando")
[1] "... acordando"
> toc()
modo soneca: 30.18 sec elapsed

Estatística Computacional I - 2020
183

 Exemplo – timers aninhados
> # timers aninhados
>
> tic("total")
> tic("geração de dados")
> X <- matrix(rnorm(50000*1000), 50000, 1000)
> b <- sample(1:1000, 1000)
> y <- runif(1) + X %*% b + rnorm(50000)
> toc()
> tic("ajuste de modelo linear")
> model <- lm(y ~ X)
> toc()
> toc()
geração de dados: 4.37 sec elapsed
ajuste de modelo linear: 65.16 sec elapsed
total: 69.55 sec elapsed
> dim(X)
[1] 50000 1000
> length(b)
[1] 1000

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 6

Estatística Computacional I - 2020
184

• Pacote rbenchmark:
> library(rbenchmark)
>
> # verificação do tempo de processamento de 3 procedimentos de cálculo
> benchmark("mod" = {
+ X <- matrix(rnorm(1000), 100, 10)
+ y <- X %*% sample(1:10, 10) + rnorm(100)
+ b <- lm(y ~ X + 0)$coef
+ },
+ "pseudoinversa" = {
+ X <- matrix(rnorm(1000), 100, 10)
+ y <- X %*% sample(1:10, 10) + rnorm(100)
+ b <- solve(t(X) %*% X) %*% t(X) %*% y
+ },
+ "sistema linear" = {
+ X <- matrix(rnorm(1000), 100, 10)
+ y <- X %*% sample(1:10, 10) + rnorm(100)
+ b <- solve(t(X) %*% X, t(X) %*% y)
+ },
+ replications = 1000,
+ columns = c("test", "elapsed", "relative", "user.self", "sys.self"))

teste réplicas elapsed relative user.self sys.self
1 mod 1000 1.01 7.214 1.02 0
2 pseudoinversa 1000 0.21 1.500 0.20 0
3 sistema linear 1000 0.14 1.000 0.14 0

Relativo: razão com o mais rápido
Estatística Computacional I - 2020

185

• Comparação de métodos de cálculo de
coeficientes de regressão linear:
 Ajuste de modelo linear (comando lm)
 Inversa generalizada de Moore-Penrose

 Inversa generalizada de Moore-Penrose, sem
matrizes inversas explícitas

– Uso do comando solve do R

Estatística Computacional I - 2020
186

• Pacote microbenchmark:
 Exemplo:

> library(microbenchmark)
> set.seed(666)
> n <- 10000
> p <- 100
> # matriz de dados - (valores das 100 explicativos)
> X <- matrix(rnorm(n*p), n, p)
> dim(X)
[1] 10000 100
> # vetor das respostas
> y <- X %*% rnorm(p) + rnorm(100)
> # função para checar os valores dos 101 coeficientes de regressão
> verifica.coefs <- function(values) {
+ tol <- 1e-12
+ max_error <- max(c(abs(values[[1]] - values[[2]]),
+ abs(values[[2]] - values[[3]]),
+ abs(values[[1]] - values[[3]])))
+ max_error < tol
+ }

Estatística Computacional I - 2020
187

 Verificação do tempo de processamento:
– Comando microbenchmark.

> # verificação do tempo de processamento de 3 procedimentos de cálculo
> mbm <- microbenchmark(“mod = { b <- lm(y ~ X + 0)$coef },
+ "pseudoinversa" = {
+ b <- solve(t(X) %*% X) %*% t(X) %*% y
+ },
+ "sistema linear" = {
+ b <- solve(t(X) %*% X, t(X) %*% y)
+ },
+ # argumentos do comando
+ check = verifica.coefs, times = 100L)
> mbm
Unit: milliseconds

expr min lq mean median uq max neval
mod 143.6041 153.29100 182.1130 175.45494 191.9938 406.3161 100

pseudoinversa 134.3636 139.13713 167.5937 153.13120 175.5606 336.8410 100
sistema linear 80.6214 85.46624 106.9313 96.49853 125.1804 202.2652 100
> str(mbm)
Classes ‘microbenchmark’ and 'data.frame': 300 obs. of 2 variables:
$ expr: Factor w/ 3 levels "lm","pseudoinverse",..: 3 3 2 3 2 2 1 1 1 3 ...
$ time: num 8.06e+07 8.47e+07 1.39e+08 9.11e+07 1.41e+08 ...

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 7

 Visualização gráfica dos resultados:

 Distribuição dos tempos de
processamento de cada
procedimento de cálculo dos
coeficientes.

Estatística Computacional I - 2020
188

> # grafico dos resultados de microbenchmark
> boxplot(mbm)

 Visualização gráfica dos resultados:
– Integração com o pacote ggplot2

 Densidade dos tempos de
processamento de cada
procedimento de cálculo dos
coeficientes.

Estatística Computacional I - 2020
189

> # grafico dos resultados - pacote ggplot2
> library(ggplot2)
> autoplot(mbm)

Estatística Computacional I - 2020
190

• Comentário:
 A função microbenchmark verifica

automaticamente os resultados das
expressões, comparando-as com uma função
especificada pelo usuário.

Estatística Computacional I - 2020
191

• Comando proc.time:

 winProgressBar:
– Barra de progresso durante cálculos demorados

> # Comando proc.time
>
> n <- 100
> inicio <- proc.time()[3]
> barra <- winProgressBar(title = "Progress Bar", min = 0, max = n)
> for(i in 1:n) {
+ # Interrompe execução das funções do R durante 0,1 seg.
+ Sys.sleep(.1)
+ setWinProgressBar(barra, i, title = paste(round((i/n)*100), "% Concluído"))
+ }
> Sys.sleep(0.5)
> invisible(close(barra))
> decorrido <- proc.time()[3] - inicio
> cat("Tempo decorrido:",floor(decorrido/60), "min", decorrido%%60,"seg. \n")
Tempo decorrido: 0 min 11.47 seg.

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 8

Estatística Computacional I - 2020
192

 Comparação – abordagens com e sem loop:
> # exemplo
> g <- rnorm(100000)
> h <- rep(NA, 100000)
>
> # Incia o relógio!
> ptm <- proc.time()
>
> # Soma 1 - loop no vetor
> for (i in 1:100000){
+ h[i] <- g[i] + 1
+ }
> proc.time() - ptm
usuário sistema decorrido

0.16 0.01 0.17
> # abordagem sem loop
> ptm <- proc.time()
> h <- g + 1
> proc.time() - ptm
usuário sistema decorrido

0 0 0

Referências

Bibliografia Recomendada

• ALBERT, J.; RIZZO, M. R by Example. Springer, 2012.
• CHRISTIAN, N. Basic Programming, Lecture Notes
• DALGAARD, P. Introductory statistics with R.

Springer, 2008.
• KLEIBER, C.; ZEILEIS, A. Applied econometrics with
R. Springer, 2008.

• GARDENER, M. Beginning R: The statistical
programming language. John Wiley & Sons, 2012.

286
Estatística Computacional I - 2020

