
Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 1

Estatística Computacional I

Lupércio França Bessegato
Dep. de Estatística/UFJF

Roteiro Geral
1. Programando em R
2. Preparação, limpeza e manipulação de dados
3. Gráficos em R
4. Tópicos especiais
5. Referências

2
Estatística Computacional I - 2020

Programando em R Família Apply

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 2

Família apply
• Podem ser uma alternativa para loops

Estatística Computacional I - 2020
65

Função Descrição
apply Aplica funções nas margens de arrays
by Aplica uma função em dataframe estratificado por fatores
eapply Aplica uma função em valores de um environment
lapply Aplica uma função em uma lista, vetor ou data frame
mapply Aplica uma função a múltiplos argumentos de lista ou vetor
rapply Aplica uma função recursivamente a uma lista
sapply Aplica uma função em uma lista, vetor ou data frame
sweep
tapply Aplica uma função sobre uma matriz irregular

Comando apply
• Aplica uma função a cada linha ou coluna

de uma matriz
• Sintaxe:

apply(X, MARGIN, FUN, ...)
 X: um array
 MARGIN: (1 = linha, 2 = coluna, c(1,2) =

linha e coluna)
 FUN: função a ser aplicada
 ... : argumentos opcionais da função

Estatística Computacional I - 2020
66

Estatística Computacional I - 2020
67

• Exemplo – Envasamento de leite
 Volume da embalagem ~ Normal com média

1.000 ml e desvio padrão 4 ml
 Amostras aleatórias de tamanho 5, coletadas a

cada 30 min, num período de 8 horas
> # exemplo -leite
> set.seed(666)
> n <- 5; m <- 16
> amostras <- matrix(rnorm(n*m, 1000, 4), ncol = n, byrow = T)
> amostras <- round(amostras, 2)
> dim(amostras)
[1] 16 5
> rownames(amostras) <- paste(seq(0.5, 8, by = 0.5), "h")
> colnames(amostras) <- paste("Emb.#", 1:5)
> head(amostras)
Emb.# 1 Emb.# 2 Emb.# 3 Emb.# 4 Emb.# 5
0.5 h 1003.01 1008.06 998.58 1008.11 991.13
1 h 1003.03 994.78 996.79 992.83 999.83
1.5 h 1008.60 992.92 1003.46 993.12 1000.54

Estatística Computacional I - 2020 68

• Exemplo – Caixas de leite
 Função apply (maneira simples!):

> # média por linha - apply (maneira simples)
> medias.amostras <- apply(amostras, 1, mean)
> medias.amostras
[1] 1001.778 997.452 999.728 1001.064 999.290 994.576 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022
> is.vector(medias.amostras)
[1] TRUE
> all.equal(medias.amostras, medias.row)
[1] TRUE
> # média por coluna - apply
> medias.embalagem <- apply(amostras, 2, mean)
> medias.embalagem
[1] 999.9094 998.9438 998.6206 1000.4650 1000.0344

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 3

Estatística Computacional I - 2020
69

• Qual dos vetores de média apresenta
menor variabilidade?

> # variabilidade das medias amostrais]
> length(medias.amostras)
[1] 16
> sd(medias.amostras)
[1] 2.030615
> length(medias.embalagem)
[1] 5
> sd(medias.embalagem)
[1] 0.7781893

Estatística Computacional I - 2020 70

 Códigos dos gráficos
– Histogramas em um mesmo painel

– Densidades sobrepostas no mesmo gráfico

> op <- par(mfrow = c(2, 1))
> hist(medias.amostras, freq = F, ylab = "Densidade", ylim = c(0, 0.8),
+ xlim = c(994, 1006), main = "16 médias de amostras de tamanho 5",
cex.main = 1)
> hist(medias.embalagem, freq = F, ylab = "Densidade", ylim = c(0, 0.8),
+ xlim = c(994, 1006), main = "5 médias de tamanho 16", cex.main = 1)
> par(op)
> op
$mfrow
[1] 1 1

> curve(dnorm(x, mean = 1000, sd = 4/sqrt(5)), 994, 1006, ylim = c(0, 0.4),
+ ylab = "Densidade", xlab = "Médias")
> curve(dnorm(x, mean = 1000, sd = 4/sqrt(16)), 994, 1006, add = TRUE, lty
= 2,
+ col = 4)
> legend("topright", c("n = 5", "m = 16"), lty = c(1, 2), col = c(1, 4),
+ cex = 0.8, bty = "n")
> palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
[8] "gray"

 Gráfico sequencial da média de cada amostra

 Ideal centralizar o gráfico
em torno da média da
produção (valor alvo)

– 1.000 ml

Estatística Computacional I - 2020
71

> # grafico sequencial das médias amostrais
> plot(medias.amostras, type = "l", ylab = "Volume médio (ml)",
+ xlab = "Amostra #")
> abline(1000, 0, lty =2, col = "red")

 Gráfico de controle das médias

Estatística Computacional I - 2020
72

> # grafico de controle das médias - a cada 1/2 h
> lm <- media
> lsc <- media + 3*dp/sqrt(n)
> lic <- media - 3*dp/sqrt(n)
> LIC <- paste("LIC = ", round(lic, 1))
> LSC <- paste("LSC = ", round(lsc, 1))
> plot(medias.amostras, type = "l", ylim = c(lic - 4, lsc + 4),
+ ylab = "Volume médio (ml)", xlab = "Amostra #")
> abline(h = c(lic, 1000, lsc), lty = 2, col = c("blue", "red", "blue"))
> text(x = c(1, 1), y = c(lic, lsc) + 0.5, c(LSC, LIC), cex = 0.8, pos = 4,
offset = 1,
+ col = "blue")
> title(main = "Gráfico de controle das médias")
> abline(h = mean(medias.amostras), lty = 2, lwd = 2, col = "red")
> text(9, 1000 - 1, "Média global", pos = 1, cex = 0.8, font = 2, col =
"red")
> arrows(9, 1000 - 1.5, 9.5, mean(medias.amostras), lwd = 2, length = 0.1,
+ angle = 15)

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 4

 Gráfico de controle das médias

 Alguma da médias saiu da
região de controle do
gráfico?

 Qual?

Estatística Computacional I - 2020
73

 Identificação ponto fora da curva

 Tente o comandoidentify(1).

Estatística Computacional I - 2020
74

> # identificação pontos fora da região de controle
> fora <- medias.amostras[medias.amostras<lic | medias.amostras > lsc]
> fora; lic
[1] 994.576
[1] 994.6334
> which(medias.amostras == fora)
[1] 6
> points(6, medias.amostras[6], pch = 16, col = "red")

Estatística Computacional I - 2020 75

• Para as médias de linhas e colunas há
comandos específicos!
 Comandos rowMeans e colMeans

 Outros comandos por linhas e colunas
– rowSums e colSums.

> # media por linha e coluna - comandos rowMeans e colMeans
> rowMeans(amostras)
[1] 1001.778 997.452 999.728 1001.064 999.290 994.576 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022
> colMeans(amostras)
[1] 999.9094 998.9438 998.6206 1000.4650 1000.0344

Estatística Computacional I - 2020 76

• Suponha que não tenha sido anotado o
volume da 3ª. embalagem da amostra da
6ª. meia hora
 Comandos rowMeans e colMeans

 Argumentos opcionais da função são
dispostos no comando apply

> # comando apply - comandos opcionais
> amostras[6, 3] <- NA
> apply(amostras, 1, mean)
[1] 1001.778 997.452 999.728 1001.064 999.290 NA 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022
> apply(amostras, 1, mean, na.rm = TRUE)
[1] 1001.778 997.452 999.728 1001.064 999.290 994.985 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 5

Estatística Computacional I - 2020 77

• Deseja-se calcular o coeficiente de
variação por linha e por coluna
 Não há comando no R para esse cálculo

> # cálculo de função construída pelo usuário
> apply(amostras, 1, function(x) sd(x, na.rm = T)/mean(x, na.rm = T))
[1] 0.0071406716 0.0040634290 0.0067715184 0.0024154519 0.0037076493
[6] 0.0007792574 0.0035788397 0.0050205090 0.0038794314 0.0027465927
[11] 0.0031722062 0.0037257097 0.0055418110 0.0031216872 0.0028533020
[16] 0.0045046186
> apply(amostras, 2, function(x) sd(x, na.rm = T)/mean(x, na.rm = T))
[1] 0.003696620 0.004012343 0.004656646 0.005019586 0.004160150

Estatística Computacional I - 2020 78

• Script com funções e objeto
 funcoes.R

Simulação de volumes de leite
set.seed(666)
n <- 5; m <- 16; media <- 1000; dp = 4
amostras <- matrix(rnorm(n*m, mean = media, sd = dp), ncol = n, byrow = T)
amostras <- round(amostras, 2)

central <- function(y, medida){
Cálculo de medidas de posição central
switch(medida, media = mean(y), mediana = median(y),

geometrica = prod(y)^(1/length(y)),
aparada = mean(x, trim = .1),
"Inválida")

}

Estatística Computacional I - 2020 79

• Aplicação de função do usuário
 Função central, para cálculo de médias

geométricas por linha
> # aplicação de função construída anteriormente
> source("funcoes.R")
> apply(amostras, 1, FUN = central, medida = "geometrica")
[1] 1001.7575 997.4454 999.7097 1001.0617 999.2845 994.5755 1000.9129
[8] 1001.1479 1001.6840 999.7470 999.6500 1000.1345 999.5057 1001.4081
[15] 999.3607 996.0139

• apply:
 Aplica função a todos os elementos de objeto

 (a) Objeto com os quais a função trabalha
 (b) Elementos do objeto vistos pela função

Estatística Computacional I - 2020
80

Função Objetos(a) Elementos(b) Tipo de resultado
apply Matriz Linhas ou colunas Vetor, matriz, array

ou lista
Array Linhas, colunas ou

qualquer dimensão
Vetor, matriz, array
ou lista

Data frame Linhas ou colunas Vetor, matriz, array
ou lista

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 6

Comando lapply
• Aplica uma função a cada linha ou coluna

de uma matriz
 Saída é uma lista

• Sintaxe:
lapply(X, FUN, ...)

 X: vetor, lista ou data frame
 FUN: função a ser aplicada
 ... : argumentos opcionais da função

Estatística Computacional I - 2020
81

• lapply:
 Aplica função a todos os elementos de objeto

 (a) Objeto com os quais a função trabalha
 (b) Elementos do objeto vistos pela função

Estatística Computacional I - 2020
82

Função Objetos(a) Elementos(b) Tipo de resultado
lapply Vetor Elementos Lista

Data frame Variáveis Lista
Lista Elementos Lista

Estatística Computacional I - 2020
83

• Diferença com o comando apply:
 Pode ser usada com objetos do tipo data

frame, lista ou vetor
 A saída do comando é uma lista

– Possui o mesmo número de elementos do objeto

Estatística Computacional I - 2020
84

• Exemplo – lista de objetos Elementos são objetos diferentes
> #cria lista com dois elementos
> lista <- list(a = 1:10, b = 11:20, c = matrix(1:6, ncol = 2))
> # média dos valores em cada elemento da lista
> lapply(lista, mean)
$a
[1] 5.5
$b
[1] 15.5
$c
[1] 3.5
> class(lapply(lista, mean))
[1] "list”
> # soma dos valores em cada elemento
> lapply(lista, sum)
$a
[1] 55
$b
[1] 155
$c
[1] 21

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 7

Estatística Computacional I - 2020
85

• Exemplo – data frame Elementos são as variáveis
> # exemplo - data frame
> lapply(iris[1:4], mean)
$Sepal.Length
[1] 5.843333
$Sepal.Width
[1] 3.057333
$Petal.Length
[1] 3.758
$Petal.Width
[1] 1.199333
> class(lapply(iris[1:4], mean))
[1] "list”

Estatística Computacional I - 2020
86

• Exemplo – vetor Função é aplicada em cada elemento do vetor

• Importante: Se você quer uma lista como saída, uselapply; se quer um vetor, use sapply

> # exemplo - vetor
> lapply(1:3, function(x) x^2)
[[1]]
[1] 1
[[2]]
[1] 4
[[3]]
[1] 9
> # transforma lista em vetor
> unlist(lapply(1:3, function(x) x^2))
[1] 1 4 9

Estatística Computacional I - 2020
87

• Exemplo – lista de matrizes
> #criação de uma lista de matrizes
> A <- matrix(1:9, ncol = 3)
> B <- matrix(4:15, ncol = 3)
> C <- matrix(8:10, nrow = 3, ncol = 2)
> lista.mat <-list(A, B, C)
> # extrair a 2a. coluna de cada matriz
> lapply(lista.mat, "[", , 2)
[[1]]
[1] 4 5 6
[[2]]
[1] 8 9 10 11
[[3]]
[1] 8 9 10
> unlist(lapply(lista.mat, "[", , 2))
[1] [1] 4 5 6 8 9 10 11 8 9 10

Comando sapply
• Aplica uma função a cada linha ou coluna

de uma matriz
 Saída é um vetor

• Sintaxe:
sapply(X, FUN, ..., simplify = T)

 X: vetor, lista ou data frame
 FUN: função a ser aplicada
 ... : argumentos opcionais da função
 simplify: T = saída é vetor, F = saída é

lista
Estatística Computacional I - 2020

88

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 8

Estatística Computacional I - 2020
89

• Diferença com o comando lapply:
 Tenta simplificar a saída para a estrutura de

dados mais elementar possível

• sapply:
 Aplica função a todos os elementos de objeto

 (a) Objeto com os quais a função trabalha
 (b) Elementos do objeto vistos pela função

Estatística Computacional I - 2020
90

Função Objetos(a) Elementos(b) Tipo de resultado
sapply Vetor Elementos Vetor, matriz ou lista

Data frame Variáveis Vetor, matriz ou lista
Lista Elementos Vetor, matriz ou lista

Estatística Computacional I - 2020
91

• Exemplo Saídas como vetores
> # exemplo - lista
> # média dos valores em cada elemento da lista
> sapply(lista, mean)

a b c
5.5 15.5 3.5
> class(sapply(lista, mean))
[1] "numeric"
> # soma dos valores em cada elemento
> sapply(lista, sum)
a b c
55 155 21
> # exemplo - data frame
> sapply(iris[1:4], mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.843333 3.057333 3.758000 1.199333
> # exemplo - vetor
> sapply(1:3, function(x) x^2)
[1] 1 4 9

Estatística Computacional I - 2020
92

• Exemplos Uso do argumento simplify
> # extrair a 1o. elemento da 2a. linha de cada matriz
> sapply(lista.mat, "[", 1, 2)
[1] 4 8 8
> # resultado de sapply será uma lista
> sapply(lista.mat, "[", 1, 2, simplify = F)
[[1]]
[1] 4
[[2]]
[1] 8
[[3]]
[1] 8

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 9

Estatística Computacional I - 2020
93

• Exemplo:
 Rendimento total de cevada, em bushels por

acre, para 10 variedades em 6 locais, em 2 anos
> # barley data frame
> library (lattice)
> dim (barley)
[1] 120 4
> head(barley)

yield variety year site
1 27.00000 Manchuria 1931 University Farm
2 48.86667 Manchuria 1931 Waseca
3 27.43334 Manchuria 1931 Morris
4 39.93333 Manchuria 1931 Crookston
5 32.96667 Manchuria 1931 Grand Rapids
6 28.96667 Manchuria 1931 Duluth
> unique(barley$site)
[1] University Farm Waseca Morris Crookston
[5] Grand Rapids Duluth
> unique(barley$yield)
> barley$yield[duplicated(barley$yield)]
[1] 29.66667 48.56666 32.96667 35.13333 27.43334 20.63333

Estatística Computacional I - 2020
94

 Quantidade de valores únicos por variável
> # valores únicos por variável
> # saída: lista
> lapply (barley, function(x) length(unique(x)))
$yield
[1] 114
$variety
[1] 10
$year
[1] 2
$site
[1] 6
> is.list(lapply (barley, function(x) length(unique(x))))
[1] TRUE
> # saída: vetor
> sapply (barley, function(x) length(unique(x)))
yield variety year site

114 10 2 6
> # funciona em data frames mas não em listas
> apply (barley, 2, function(x) length(unique(x)))
yield variety year site

114 10 2 6
> is.vector(apply (barley, 2, function(x) length(unique(x))))
[1] TRUE

Comando tapply
• Aplica uma função a estratos de um vetor

 Saída é um vetor
• Sintaxe:

tapply(X, INDEX, FUN, ...,
simplify = T)

 X: vetor, lista ou data frame
 INDEX: lista de um ou mais fatores, com

mesma dimensão que X.
 FUN: função a ser aplicada
 ... : argumentos opcionais da função
 simplify: F = saída é lista

Estatística Computacional I - 2020
95

X, INDEX

Estatística Computacional I - 2020
96

• Exemplo - mtcars
> str(mtcars$cyl)
num [1:32] 6 6 4 6 8 6 8 4 4 6 ...
> is.factor(mtcars$cyl)
[1] FALSE
> levels(as.factor(mtcars$cyl))
[1] "4" "6" "8"
> tapply(mtcars$mpg,mtcars$cyl,mean)

4 6 8
26.66364 19.74286 15.10000
> # media de mpg por nivel das variáveis cyl e gear
> with(mtcars, tapply(mpg,list(cyl, gear), mean, na.rm = T))

3 4 5
4 21.50 26.925 28.2
6 19.75 19.750 19.7
8 15.05 NA 15.4

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 10

Estatística Computacional I - 2020
97

• Exemplo – barley:
> library(lattice)
> dim(barley)
[1] 120 4
> tapply (barley$yield, barley$site, mean)

Grand Rapids Duluth University Farm Morris Crookston
24.93167 27.99667 32.66667 35.40000 37.42000

Waseca
48.10833

> is.array(tapply (barley$yield, barley$site, mean))
[1] TRUE
> tapply (barley$yield, list (barley$year, barley$site), mean)

Grand Rapids Duluth University Farm Morris Crookston Waseca
1932 20.81000 25.70000 29.50667 41.51333 31.18 41.87000
1931 29.05334 30.29333 35.82667 29.28667 43.66 54.34667
> is.matrix(tapply (barley$yield, list (barley$year, barley$site), mean))
[1] TRUE

Estatística Computacional I - 2020
98

 barley – função definida pelo usuário
> objeto <- tapply(barley$yield, barley$site, function(x) c(media = mean(x),
+ dp = sd(x)))
> objeto
$`Grand Rapids`

media dp
24.931667 6.598109
$Duluth

media dp
27.996667 4.037034
...
> is.vector(objeto[1])
[1] TRUE
> tabela <- t(sapply(objeto, rbind))
> colnames(tabela) <- c("Média", "Desio padrão")
> tabela

Média Desio padrão
Grand Rapids 24.93167 6.598109
Duluth 27.99667 4.037034
University Farm 32.66667 6.159344
Morris 35.40000 8.186352
Crookston 37.42000 8.089373
Waseca 48.10833 9.464096

Estatística Computacional I - 2020
99

• Exemplo - Orange
> str(Orange)
Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':
35 obs. of 3 variables:
$ Tree : Ord.factor w/ 5 levels "3"<"1"<"5"<"2"<..: 2 2 2 2 ...
$ age : num 118 484 664 1004 1231 ...
$ circumference: num 30 58 87 115 120 142 145 33 69 111 ...
> head(Orange)

Tree age circumference
1 1 118 30
2 1 484 58
3 1 664 87
4 1 1004 115
5 1 1231 120
6 1 1372 142
7 1 1582 145
8 2 118 33
> with(Orange, tapply(circumference, Tree, mean))

3 1 5 2 4
94.00000 99.57143 111.14286 135.28571 139.28571

 Diagrama de dispersão entre circunferência e idade

 Há associação entre a
circunferência e a idade
das árvores?

 Como foi a curva de
crescimento de cada uma
das 5 árvores?

Estatística Computacional I - 2020
100

> # relação entre circunfeência e idade
> with(Orange, plot(circumference ~ age))

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 11

 Gráfico sequencial de cada árvore

 E como desenhar uma
curva média de
crescimento das árvores?

Estatística Computacional I - 2020
101

> # gráfico sequencial do crescimento de cada árvore
> with(Orange[Orange$Tree == 1,], plot(circumference ~ age, type = "l"))
> with(Orange[Orange$Tree == 2,], lines(circumference ~ age, type = "l",
+ col = "red"))
> with(Orange[Orange$Tree == 3,], lines(circumference ~ age, type = "l",
+ col = "blue"))
> with(Orange[Orange$Tree == 4,], lines(circumference ~ age, type = "l",
+ col = "green"))
> with(Orange[Orange$Tree == 5,], lines(circumference ~ age, type = "l",
+ col = "gray"))
> legend("bottomright", c("1", "2", "3", "4", "5"), lty = 1, cex = 0.8,
+ col = c("black", "red", "blue", "green", "gray"), bty = "n")

 Gráfico sequencial de cada árvore – alternativa:

 Alguma ideia para
calcular as médias?

Estatística Computacional I - 2020
102

> # gráfico sequencial do crescimento de cada árvore - alternativa
> with(Orange, plot(circumference ~ age, cex = 0.5))
> sequencial <- function(i){
+ with(Orange[Orange$Tree == i,], lines(circumference ~ age, type = "l",
+ col = i))
+ }
> lapply(1:5, sequencial)

 Gráfico sequencial de cada árvore – alternativa:

 Não é a única maneira

Estatística Computacional I - 2020
103

> # circunferência média por idade
> with(Orange, tapply(circumference, age, mean))
118 484 664 1004 1231 1372 1582
31.0 57.8 93.2 134.2 145.6 173.4 175.8
> circunferencia.media <- with(Orange, tapply(circumference, age, mean))
> idade <- unique(Orange$age)
> lines(circunferencia.media ~ idade, col = "red", lty = 2, lwd = 2)

Comando by
• Aplica uma função a estratos de objeto

 Saída é um objeto da classe by
• Sintaxe:

by(data, INDEX, FUN, ...)
 data: data frame ou matriz
 INDEX: fator ou lista de fatores.
 FUN: função a ser aplicada
 ... : argumentos opcionais da função

Estatística Computacional I - 2020
104

X, INDEX

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 12

Estatística Computacional I - 2020
105

• Comentário:
 Aplica uma função a um data frame

estratificado por um fator

Estatística Computacional I - 2020
106

• Exemplo - iris
> # média por variável para espécie setosa
> y1 <- with(iris, subset(iris, Species == "setosa", select = -Species))
> apply(y1, 2, mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
> # média por variável para todas as espécies
> by(iris[,1:4],iris$Species,colMeans)
iris$Species: setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
--
iris$Species: versicolor
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.936 2.770 4.260 1.326
--
iris$Species: virginica
Sepal.Length Sepal.Width Petal.Length Petal.Width

6.588 2.974 5.552 2.026
> by(iris[,1:4],iris$Species,colMeans)$setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
> is.vector(by(iris[,1:4],iris$Species,colMeans)$setosa)
[1] TRUE

Estatística Computacional I - 2020
107

• Médias das variáveis por Species
 Construção de matriz com as médias

> # média por variável para todas as espécies
> do.call(rbind, as.list(by(iris[,1:4], iris$Species, colMeans)))

Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
> is.matrix(do.call(rbind, as.list(by(iris[,1:4], iris$Species, colMeans))))
[1] TRUE

Comando do.call
• Executa uma função cujos argumentos

estão em uma lista
 Diferente de lapply (ou sapply)

• lapply:
 Aplica uma função a todos os elementos de

uma lista

Estatística Computacional I - 2020
108

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 13

Estatística Computacional I - 2020
109

• Exemplo:
> # do.call
> do.call(sum, list(c(1, 2, 4, 1, 2, NA), na.rm = TRUE))
[1] 10
> # lapply
> lapply(c(1, 2, 4, 1, 2, NA), function(x) x + 1)
[[1]]
[1] 2
[[2]]
[1] 3
[[3]]
[1] 5
[[4]]
[1] 2
[[5]]
[1] 3
[[6]]
[1] NA

 Gráfico de regressões por Species:

 Loop dos gráficos usandoa função by

Estatística Computacional I - 2020
110

grafico das regressões por Species
par(mfrow = c(1, 3))
by(iris, iris$Species, function(x){

Plot para cada espécie
plot(x$Petal.Length ~ x$Petal.Width, xlab = "Largura de petála",

ylab = "Comprimento de pétala", ylim = c(1, 7))
abline(lm(Petal.Length ~ Petal.Width, x), lty = 2, col = "red",

lwd = 2)
title(main = unique(x$Species))

}
)

Estatística Computacional I - 2020
111

 Colocando os resultados em data frame
> # cálculo das médias das variáveis por espécies
> iris.medias <- by(iris[-5], iris$Species, function(x) colMeans(x))
> iris.medias
iris$Species: setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
--
iris$Species: versicolor
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.936 2.770 4.260 1.326
--
iris$Species: virginica
Sepal.Length Sepal.Width Petal.Length Petal.Width

6.588 2.974 5.552 2.026
> # saaply para colocar as médias em uma matriz
> (iris.medias2 <- t(sapply(iris.medias, I)))

Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
> # criando um data frame
> iris.new <- as.data.frame(iris.medias2)
> is.data.frame(iris.new)
[1] TRUE

Comando aggregate
• Aplica função a estratos de um data

frame
 Saída é um data frame

• Sintaxe:
aggregate(X, by, FUN, ...)

 X: data frame ou matriz
 by: fator ou lista de fatores.
 FUN: função a ser aplicada
 ... : argumentos opcionais da função

Estatística Computacional I - 2020
112

X, INDEX

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 14

Estatística Computacional I - 2020
113

• Exemplo – iris:
> # exemplo - iris
> iris.x <- subset(iris, select = -Species)
> iris.s <- subset(iris, select = Species)
> aggregate(iris.x, iris.s, mean)

Species Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026
> # interface por fórmula
> aggregate(. ~ Species, iris, mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Estatística Computacional I - 2020
114

 Média e desvio padrão – iris:
> # função definida pelo usuário
> # calculo de mais de uma função por estrato
> ag <- aggregate(. ~ Species, iris, function(x) c(mean = mean(x), sd = sd(x)))
> is.data.frame(ag)
[1] TRUE
> dim(ag)
[1] 3 5
> ag

Species Sepal.Length.mean Sepal.Length.sd Sepal.Width.mean Sepal.Width.sd
1 setosa 5.0060000 0.3524897 3.4280000 0.3790644
2 versicolor 5.9360000 0.5161711 2.7700000 0.3137983
3 virginica 6.5880000 0.6358796 2.9740000 0.3224966
Petal.Length.mean Petal.Length.sd Petal.Width.mean Petal.Width.sd

1 1.4620000 0.1736640 0.2460000 0.1053856
2 4.2600000 0.4699110 1.3260000 0.1977527
3 5.5520000 0.5518947 2.0260000 0.2746501
> ag[[1]]
[1] setosa versicolor virginica
Levels: setosa versicolor virginica
> ag[-1][[4]]
mean sd
[1,] 0.246 0.1053856
[2,] 1.326 0.1977527
[3,] 2.026 0.2746501

Estatística Computacional I - 2020
115

 Comandos split e apply – iris:

 Dados são divididos em subconjuntos para
cada uma das espécies

– Cálculo da média para cada coluna de cada
subconjunto

 Saída é uma matriz
– Transposta da saída anterior

> # comandos split e apply
> sapply(split(iris.x, iris.s), function(x) apply(x, 2, mean))

setosa versicolor virginica
Sepal.Length 5.006 5.936 6.588
Sepal.Width 3.428 2.770 2.974
Petal.Length 1.462 4.260 5.552
Petal.Width 0.246 1.326 2.026

Estatística Computacional I - 2020 116

• Exemplo – datas:
> # exemplo - datas
> datas <- data.frame(data = as.Date("01-01-2018", format = "%d-%m-%Y") + 0:729)
> head(datas)
data
1 2018-01-01
2 2018-01-02
3 2018-01-03
> mean(datas$data)
[1] "2018-12-31“
> as.Date("28/08/1991", format = "%d/%m/%Y") - as.Date("17/01/1991",
+ format = "%d/%m/%Y")
Time difference of 223 days
> as.Date("31/07/2017", format = "%d/%m/%Y") + 223
[1] "2018-03-11”
> # último dia de cada mês
> ultimo <- aggregate(x = datas["data"],
+ by = list(mes = substr(datas$data, 1, 7)),
+ FUN = mean)
> head(ultimo)

mes data
1 2018-01 2018-01-16
2 2018-02 2018-02-14
3 2018-03 2018-03-16

> substr("abcdef", 2, 4)
[1] "bcd"

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 15

Estatística Computacional I - 2020
117

• Exemplo – mtcars:
> options(digits=3)
> mtcars.medias <-aggregate(mtcars, by = list(mtcars$cyl, mtcars$ gear),
+ FUN = mean, na.rm = TRUE)
> mtcars.medias
Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb
1 4 3 21.5 4 120 97 3.70 2.46 20.0 1.0 0.00 3 1.00
2 6 3 19.8 6 242 108 2.92 3.34 19.8 1.0 0.00 3 1.00
3 8 3 15.1 8 358 194 3.12 4.10 17.1 0.0 0.00 3 3.08
4 4 4 26.9 4 103 76 4.11 2.38 19.6 1.0 0.75 4 1.50
5 6 4 19.8 6 164 116 3.91 3.09 17.7 0.5 0.50 4 4.00
6 4 5 28.2 4 108 102 4.10 1.83 16.8 0.5 1.00 5 2.00
7 6 5 19.7 6 145 175 3.62 2.77 15.5 0.0 1.00 5 6.00
8 8 5 15.4 8 326 300 3.88 3.37 14.6 0.0 1.00 5 6.00
> # nome dos grupos
> aggregate(mtcars[, -c(2, 10)], by = list(Cilindros = mtcars$cyl,
+ Marcha = mtcars$gear), FUN = mean, na.rm = TRUE)
> # interface por fórmula
> aggregate(. ~ cyl + gear, mtcars, mean, na.rm = T)
> options(digits = 7)

Estatística Computacional I - 2020
118

• Exemplo – ChickWeight:
> help(ChickWeight)
> dim(ChickWeight)
[1] 578 4
> head(ChickWeight)
weight Time Chick Diet

1 42 0 1 1
2 51 2 1 1
3 59 4 1 1
4 64 6 1 1
5 76 8 1 1
6 93 10 1 1
> is.data.frame(ChickWeight)
[1] TRUE

Estatística Computacional I - 2020
119

 Estrutura do conjunto de dados
> str(ChickWeight)
Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:
$ weight: num 42 51 59 64 76 93 106 125 149 171 ...
$ Time : num 0 2 4 6 8 10 12 14 16 18 ...
$ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15 ...
$ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "formula")=Class 'formula' language weight ~ Time | Chick
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "outer")=Class 'formula' language ~Diet
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time"
..$ y: chr "Body weight"
- attr(*, "units")=List of 2
..$ x: chr "(days)"
..$ y: chr "(gm)“

Estatística Computacional I - 2020
120

 Exploração – ChickWeight:
> # quantidade de pintinhos
> unique(ChickWeight$Chick)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
50 Levels: 18 < 16 < 15 < 13 < 9 < 20 < 10 < 8 < 17 < 19 < 4 < 6 < 11 < ... < 48
> length(unique(ChickWeight$Chick))
[1] 50
> # quantidade de dietas
> unique(ChickWeight$Diet)
[1] 1 2 3 4
Levels: 1 2 3 4
> is.numeric(unique(ChickWeight$Diet))
[1] FALSE
> # quantidade de instantes de tempos
> unique(ChickWeight$Time)
[1] 0 2 4 6 8 10 12 14 16 18 20 21
> is.numeric(unique(ChickWeight$Time))
[1] TRUE

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 16

 Box-plot weight por Chick:

 Os crescimentos são
iguais para cada pintinho?

Estatística Computacional I - 2020
121

> # box-plot por peso por pintinho
> plot(weight ~ Chick, ChickWeight)

 Plot weight por Time:

 Como é a curva de
crescimento média desses
pintinhos?

Estatística Computacional I - 2020
122

> # relação entre peso e tempo
> plot(weight ~ Time, ChickWeight)

 Linha média de crescimento:

Estatística Computacional I - 2020
123

> # peso médio por instante de tempo
> tapply(ChickWeight$weight, ChickWeight$Time, mean)
> length(unique(ChickWeight$Chick))

0 2 4 6 8 10 12 14
41.06000 49.22000 59.95918 74.30612 91.24490 107.83673 129.24490 143.81250

16 18 20 21
168.08511 190.19149 209.71739 218.68889
> peso.medio <- with(ChickWeight, tapply(weight, Time, mean))
> instantes <- unique(ChickWeight$Time)
> is.numeric(instantes)
[1] TRUE
> # ganho médio de peso (todos os pintinhos)
> lines(peso.medio ~ instantes, lty = 2, lwd = 2, col = "red")

 Linha de regressão weight vs. Time:

 A linha média de
crescimento e a reta de
regressão são próximas?

 Qual a taxa de aumento de
peso por unidade de tempo?

– Em que regiões do gráfico
você acha que essa estimativa
é mais imprecisa

Estatística Computacional I - 2020
124

> # linha de regressão
> abline(lm(weight ~ Time, data = ChickWeight), lty = 3, lwd = 2, col =
"blue")
> # parâmetros da regressão
> lm(weight ~ Time, data = ChickWeight)
Call:
lm(formula = weight ~ Time, data = ChickWeight)
Coefficients:
(Intercept) Time

27.467 8.803

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 17

 Ganho de peso por pintinho:

 Difícil perceber o
crescimento de cada pintinho

 Ideal:
– Gráfico sequencial

Estatística Computacional I - 2020
125

> # ganho de peso por pintinho
> plot(weight ~ Time, ChickWeight, col = as.numeric(Chick))

 Gráfico sequencial por pintinho:

 O que poderia ser
acrescentado ao gráfico?

 Há outra maneira para
construir esse gráfico?

Estatística Computacional I - 2020
126

> # Gráfico para cada pintinho
> pintinho <- levels(ChickWeight$Chick)
> linhas.pintinho <- function(i){
+ with(ChickWeight[ChickWeight$Chick == pintinho[i],],
+ lines(Time, weight, col = as.numeric(pintinho[i])))
+ }
> invisible(lapply(seq_along(pintinho), linhas.pintinho))

 Visualização do efeito das dietas:

 As dietas têm efeitos
diferentes no crescimento
dos pintinhos?

Estatística Computacional I - 2020
127

> # ganho de peso por dieta
> plot(weight ~ Time, ChickWeight,
+ col = c('red', 'blue', 'green', "gray")[as.numeric(ChickWeight$Diet)])

Estatística Computacional I - 2020
128

 Estatísticas por dieta tempo:
> # média de peso por dieta
> with(ChickWeight, aggregate(weight, list(dieta = Diet), mean))
dieta x

1 1 102.6455
2 2 122.6167
3 3 142.9500
4 4 135.2627
> # desvio padrão por dieta
> with(ChickWeight, aggregate(weight, list(dieta = Diet), sd))
dieta x

1 1 56.65655
2 2 71.60749
3 3 86.54176
4 4 68.82871
> #peso médio por instante de tempo
> aggregate(weight ~ Time, data = ChickWeight, mean)

Time weight
1 0 41.06000
2 2 49.22000
3 4 59.95918
4 6 74.30612
5 8 91.24490
6 10 107.83673
7 12 129.24490
8 14 143.81250

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 18

Estatística Computacional I - 2020
129

 Média por instante de tempo e dieta:
> # peso médio por dieta e por instante de tempo
> aggregate(weight ~ Time + Diet, data = ChickWeight, mean)
Time Diet weight
1 0 1 41.40000
2 2 1 47.25000
3 4 1 56.47368
4 6 1 66.78947
5 8 1 79.68421
6 10 1 93.05263
7 12 1 108.52632
8 14 1 123.38889
9 16 1 144.64706
10 18 1 158.94118
11 20 1 170.41176
12 21 1 177.75000
13 0 2 40.70000
14 2 2 49.40000
15 4 2 59.80000
16 6 2 75.40000
17 8 2 91.70000
18 10 2 108.50000
19 ...

 Gráficos dos crescimentos médios por dieta:

 Os crescimentos médios são
diferentes?

 Em média, qual dieta leva a
um crescimento mais rápido?

Estatística Computacional I - 2020
130

> # gráfico das linhas de crescimento médio por dieta
> dieta.media <- with(ChickWeight, tapply(weight, list(Time, Diet), mean))
> invisible(lapply(1:4, function(x) lines(dieta.media[, x] ~ instantes, lty = x,

col = c('red', 'blue', 'green', "gray")[as.numeric(ChickWeight$Diet)])))

 Crescimentos por dieta e por pintinhos:

 Os crescimentos médios são
diferentes?

 Em média, qual dieta leva a
um crescimento mais rápido?

Estatística Computacional I - 2020
131

> # Gráficos dos crescimentos por dieta e por pintinhos
> dados <- split(ChickWeight, ChickWeight$Diet)
> is.list(dados)
[1] TRUE
> # função para traçar uma linha por pintinho
> cada.linha <- function(data, individuo, i){
+ with(data[data$Chick == individuo[i],],
+ lines(Time, weight, col = as.numeric(individuo[i])))
+ }
> # função para traçar linhas dos pintinhos por dieta
> linhas.dieta <- function(x){
+ pintinhos <- unique(x$Chick)
+ plot(weight ~ Time, data = x, type = "n")
+ invisible(lapply(seq_along(pintinhos), FUN = function(i) {
+ cada.linha(data = x, individuo = pintinhos, i)}
+))
+ title(main = paste("Dieta #", unique(x$Diet)))
+
+ }

 Gráficos dos crescimentos por dieta e por pintinhos:

 Como você escreveria esse
código?

 O que fazer para melhorar os
gráficos?

 O que poderia ser
acrescentado?

Estatística Computacional I - 2020
132

> # gráficos dos crescimentos separados por dieta
> par(mfrow = c(2, 2))
> invisible(lapply(dados, linhas.dieta))

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 19

Comando rapply
• Aplica recursivamente função a todos os

elementos de uma lista
 Saída é um vetor ou uma lista

• Sintaxe:
rapply(object, f, ...)

 object: lista
 f: função com um único argumento
 class: classes a que função deve ser aplicada
 ... : argumentos opcionais da função

Estatística Computacional I - 2020
133

X, INDEX

Estatística Computacional I - 2020 134

• Exemplo 1:
 Função e how = "unlist" (default):

 Argumento how = "list"

> # exemplo 1
> lista <- list(a = 1:10, b = 11:20)
> # função aplicada a cada elemento da lista - saída vetor
> rapply(lista, mean)

a b
5.5 15.5

> # função aplicada a cada elemento da lista - saída lista
> rapply(lista, mean, how = "list")
$a
[1] 5.5
$b
[1] 15.5

Estatística Computacional I - 2020 135

 how = "unlist" (default):

 Argumento how = "list"

> # log2 de cada valor na lista
> rapply(lista, log2)

a1 a2 a3 a4 a5 a6 a7 a8
0.000000 1.000000 1.584963 2.000000 2.321928 2.584963 2.807355 3.000000

a9 a10 b1 b2 b3 b4 b5 b6
3.169925 3.321928 3.459432 3.584963 3.700440 3.807355 3.906891 4.000000

b7 b8 b9 b10
4.087463 4.169925 4.247928 4.321928

> # log2 de cada elemento em cada lista
> rapply(lista, log2, how = "list")
$a
[1] 0.000000 1.000000 1.584963 2.000000 2.321928 2.584963 2.807355 3.000000
[9] 3.169925 3.321928
$b
[1] 3.459432 3.584963 3.700440 3.807355 3.906891 4.000000 4.087463 4.169925
[9] 4.247928 4.321928

Estatística Computacional I - 2020 136

• Exemplo 2
 Argumento class:

 Aplica função apenas aos elementosnumeric

> # exemplo 2
> lista.1 <- list(1, 2, 3, 4)
> rapply(lista.1, function(x){x^2}, class = c("numeric"))
[1] 1 4 9 16
> # lista com elemento de classe não especificada
> lista.2 <- list(1, 2, 3, 4, "a")
> rapply(lista.2, function(x){x^2}, class = c("numeric"))
[1] 1 4 9 16

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 20

Estatística Computacional I - 2020 137

 Argumento how:
> # exemplo 2 – lista com sublistas
> lista.3 <- list(1, list(2, 3), 4, list(5, list(6, 7)))
> str(lista.3)
List of 4
$: num 1
$:List of 2
..$: num 2
..$: num 3
$: num 4
$:List of 2
..$: num 5
..$:List of 2
.. ..$: num 6
.. ..$: num 7

> # saída é vetor
> rapply(lista.3, function(x){x^2}, class = c("numeric"))
[1] 1 4 9 16 25 36 49
> # saída é lista (estrutura original)
> objeto.1 <- rapply(lista.3, function(x){x^2}, class = c("numeric"),
+ how = "list")
> str(objeto.1)
List of 4
$: num 1
$:List of 2
...

Estatística Computacional I - 2020 138

• Exemplos
 Argumento deftl:

 Se a lista contiver um elemento de uma classe
diferente, ele será substituído pelo elemento
especificado no argumento deflt

> # exemplo 3 - substituição
> lista.4 <- list(1, list(2), "f")
> objeto.2 <- rapply(lista.4, function(x){x^2}, class = c("numeric"),
+ how = "list", deflt = "p")
> objeto.2
[[1]]
[1] 1
[[2]]
[[2]][[1]]
[1] 4

[[3]]
[1] "p"

Estatística Computacional I - 2020 139

 Argumento how = “unlist”:

 Argumento how = “replace”:

> # saída não é lista
> objeto.3 <- rapply(lista.4, function(x){x^2}, class = c("numeric"),
+ how = "unlist", deflt = "p")
> objeto.3
[1] "1" "4" "p"
> is.vector(objeto.3)
[1] TRUE

> # mantém valores originais da classe não "numeric"
> objeto.4 <- rapply(lista.4, function(x){x^2}, class = c("numeric"),
+ how = "replace", deflt = "p")
> objeto.4
[1]]
[1] 1
[[2]]
[[2]][[1]]
[1] 4
[[3]]
[1] "f"

Estatística Computacional I - 2020 140

 Outros argumentos da função a ser aplicada:
> # outros argumentos de f (função a ser aplicada)
> objeto.5 <- rapply(lista.4, function(x, y){x^y}, class =
c("numeric"),
+ how = "unlist", deflt = "p", y = 3)
> objeto.5
[1] "1" "8" "p"
> is.vector(objeto.5)
[1] TRUE

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 21

Comando vapply
• Similar a sapply,

 Requer especificação do tipo de dados
desejados na saída

 Saída é um vetor ou matriz
• Sintaxe:

vapply(X, FUN, FUN.VALUE, ...)
 X: vetor ou lista
 FUN: função com um único argumento
 FUN.VALUE: tipo de dados desejados
 ... : argumentos opcionais da função

Estatística Computacional I - 2020
141

X, INDEX

Estatística Computacional I - 2020 142

• Exemplo 1:
 Vetores e listas:

 Saída será um erro se função retornar mais de
um valor numérico

– FUN.VALUE = numeric (1) pode ser útil
caso se espere apenas um resultado elemento

> # exemplo 1
> # saida numerica - vetor
> vetor.v <- 1:10
> vapply(vetor.v, sum, numeric(1))
[1] 1 2 3 4 5 6 7 8 9 10
> # saída numérica - lista
> A <- 1:9
> B <- 1:12
> C <- 1:15
> lista.v <- list(A, B, C)
> vapply(lista.v, sum, numeric(1))
[1] 45 78 120

Estatística Computacional I - 2020 143

• Exemplo 2:

 Saída é uma matriz
– Nomes das colunas: elementos da lista original
– Nomes das linhas: template da saída

> # exemplo 2
> lista.v2 <- list(a = rnorm(10), b = rnorm(10))
> # fivenum dos valores
> cinco <- vapply(lista.v3, fivenum,
+ c(Min. = 0, "1o. Qu." = 0, Mediana = 0, "3o. Qu." = 0, Max. = 0))
> class(cinco)
[1] "matrix"
> cinco

a b
Min. -1.4534842 -0.8821279
1o. Qu. -0.6873098 -0.2106322
Mediana -0.1527475 0.6392059
3o. Qu. 0.4422310 0.9666165
Max. 1.4889964 1.8130571

Comando mapply
• Versão multivariada de lapply e
sapply
 Caso lapply e sapply:

– Função atua somente sobre os elementos de uma
única lista

 Caso mapply
– Função é aplicada sobre o 1º elemento de cada um

dos argumentos, em seguida ao 2º, etc.
– Argumentos podem ser listas ou vetores
– Saída é um vetor ou matriz

Estatística Computacional I - 2020
144

X, INDEX

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 22

Estatística Computacional I - 2020
145

• Sintaxe:
mapply(FUN, ..., MoreArgs = NULL,
SIMPLIFY = TRUE, USE.NAMES = TRUE)

 FUN: função a ser aplicada
 ...: argumentos para vetorização (vetores

ou listas)
 MoreArgs: argumentos adicionais de FUN
(lista)

 USE.NAMES: se primeiro argumento (…)
tem nomes

 SIMPLIFY: tenta reduzir resultado a um
vetor, matriz ou array de dimensão mais alta

X, INDEX

Estatística Computacional I - 2020 146

• Exemplo 1:
 Soma de vetores:

> # exemplo 1
> a <- 1:4
> b <- 5:8
> mapply(sum, a, b)
[1] 6 8 10 12
> sapply(list(a, b), sum)
[1] 10 26
> mapply(sum, list(a, b))
[1] 10 26

Estatística Computacional I - 2020 147

• Exemplo 2:
 paste em vetores de caracteres:

> # exemplo 2
> L1 <- list(a = LETTERS[c(4,6,12,6)], b = LETTERS[c(1,5,21,1)])
> L1
$a
[1] "D" "F" "L" "F"
$b
[1] "A" "E" "U" "A"
> L2 <- list(c = LETTERS[c(4,14,22,20)], d = LETTERS[c(15,15,1,15)])
> L2
$c
[1] "D" "N" "V" "T"
$d
[1] "O" "O" "A" "O"
> mapply(paste, L1$a, L1$b, L2$c, L2$d)

D F L F
"D A D O" "F E N O" "L U V A" "F A T O"

Estatística Computacional I - 2020 148

• Exemplo 3:
 Soma em listas:

> # exemplo 3
> (L3 <- list(a = 1:10, b = 11:20))
$a
[1] 1 2 3 4 5 6 7 8 9 10
$b
[1] 11 12 13 14 15 16 17 18 19 20
> (L4 <- list(c = 21:30, d = 31:40))
$c
[1] 21 22 23 24 25 26 27 28 29 30
$d
[1] 31 32 33 34 35 36 37 38 39 40
> mapply(sum, L3$a, L3$b, L4$c, L4$d)
[1] 64 68 72 76 80 84 88 92 96 100
> mapply(sum, L3, L4)
a b

310 510
> sum(L3$a, L4$c)
[1] 310
> sum(L3$b, L4$d)
[1] 510

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 23

Estatística Computacional I - 2020 149

• Exemplo 4 – criando e salvando variável:
> # exemplo 4 - criando nova variável
> dados <- as.data.frame(matrix(c(1:10, 11:20, 21:30), nrow = 10, ncol = 3))
> colnames(dados)
[1] "V1" "V2" "V3"
> # criando nova variável
> dados$V4 <- mapply(function(x, y) x/y, x = dados$V1, y = dados$V3)
> dados$V4
[1] 0.04761905 0.09090909 0.13043478 0.16666667 0.20000000 0.23076923
[7] 0.25925926 0.28571429 0.31034483 0.33333333
> dados

V1 V2 V3 V4
1 1 11 21 0.04761905
2 2 12 22 0.09090909
3 3 13 23 0.13043478
4 4 14 24 0.16666667
5 5 15 25 0.20000000
6 6 16 26 0.23076923
7 7 17 27 0.25925926
8 8 18 28 0.28571429
9 9 19 29 0.31034483
10 10 20 30 0.33333333
> # salvando resultado em objeto
> vetor <- vector(mode = "numeric", length = 10)
> (vetor <- mapply(function(x, y) x*y, dados$V2, dados$V3))
[1] 231 264 299 336 375 416 459 504 551 600

Estatística Computacional I - 2020 150

• Exemplo 5 – state:
> # exemplo 5 - aplicando em conjuntos de dados
> library(MASS)
> help(state)
> head(state.x77, 4)

Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417
Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945
> dim(state.x77)
[1] 50 8
> str(state.x77)
num [1:50, 1:8] 3615 365 2212 2110 21198 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
..$: chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...

> populacao <- state.x77[1:50]
> area <- state.area
> pop.dens <- mapply(function(x, y) x/y, populacao, area
[1] 51609 589757 113909 53104 158693 104247 5009 2057 58560 58876
[11] 6450 83557 56400 36291 56290 82264 40395 48523 33215 10577
[21] 8257 58216 84068 47716 69686 147138 77227 110540 9304 7836
[31] 121666 49576 52586 70665 41222 69919 96981 45333 1214 31055
[41] 77047 42244 267339 84916 9609 40815 68192 24181 56154 97914

Comando sweep
• Aplica funções diferentes nos elementosMARGIN de uma matriz

 Aplicação de função em linha (coluna) de
matriz, quando o outro argumento da função
tem valor diferente para cada linha (coluna)

 Saída é um vetor ou matriz

Estatística Computacional I - 2020
151

X, INDEX

Estatística Computacional I - 2020
152

• Sintaxe:
sweep(x, MARGIN, STATS, FUN=“-
”,...)

 X: array
 MARGIN: 1 = linha, 2 = coluna
 STATS: estatística do elemento escolhido
 FUN: função que aplicará STATS
 ... : argumentos opcionais da função

X, INDEX

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 24

Estatística Computacional I - 2020 153

• Exemplo:
> # exemplo 1
> # geração de matriz do exemplo
> (dados <- matrix(1:12, ncol = 4, nrow = 3, byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
> # algumas estatísticas por elemento da matriz
> (mediaCol <- apply(dados, 2, mean))
[1] 5 6 7 8
> colMeans(dados)
[1] 5 6 7 8
> (prodCol <- apply(dados, 2, prod))
[1] 45 120 231 384
> (medianaCol <- apply(dados, 2, median))
[1] 5 6 7 8
> (dpCol <- apply(dados, 2, sd))
[1] 4 4 4 4
> (madCol <- apply(dados, 2, mad, constant = 1))
[1] 4 4 4 4

Estatística Computacional I - 2020 154

 Função sweep:
> # função sweep
> sweep(dados, 2, c(3, 4, 5, 6), "-")

[,1] [,2] [,3] [,4]
[1,] -2 -2 -2 -2
[2,] 2 2 2 2
[3,] 6 6 6 6
> sweep(dados, 2, mediaCol, "-")
[1] 5 6 7 8
> sweep(dados, 2, prodCol, "/")

[,1] [,2] [,3] [,4]
[1,] 0.02222222 0.01666667 0.01298701 0.01041667
[2,] 0.11111111 0.05000000 0.03030303 0.02083333
[3,] 0.20000000 0.08333333 0.04761905 0.03125000
> sweep(dados, 2, mediaCol, ">")

[,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] TRUE TRUE TRUE TRUE

Estatística Computacional I - 2020 155

 Padronização:

> # padronização de dados centrado na média e escalado no dp
> (dados.centrados <- sweep(dados, 2, mediaCol, "-"))

[,1] [,2] [,3] [,4]
[1,] -4 -4 -4 -4
[2,] 0 0 0 0
[3,] 4 4 4 4
> (dados.padronizados <- sweep(dados.centrados, 2, dpCol, "/")

[,1] [,2] [,3] [,4]
[1,] -1 -1 -1 -1
[2,] 0 0 0 0
[3,] 1 1 1 1

Estatística Computacional I - 2020 156

 Padronização – alternativa:
– Comando scale:

> # padronização - alternativa
> scale(dados)
[,1] [,2] [,3] [,4]
[1,] -1 -1 -1 -1
[2,] 0 0 0 0
[3,] 1 1 1 1
attr(,"scaled:center")
[1] 5 6 7 8
attr(,"scaled:scale")
[1] 4 4 4 4
> attr(dados.escalados, "scaled:scale")
[1] 4 4 4 4
> dados.escalados[,]
[,1] [,2] [,3] [,4]
[1,] -1 -1 -1 -1
[2,] 0 0 0 0
[3,] 1 1 1 1
> attr(dados.escalados, "scaled:center") <- NULL
> attr(dados.escalados, "scaled:scale") <- NULL
> dados.escalados
> scale(dados, scale = F)
> scale(dados, center = c(3, 4, 5, 6), scale = F)

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 25

Estatística Computacional I - 2020 157

• Exemplo – attitude:
> # exemplo - attitude
> mediana.att <- apply(attitude, 2, median)
> mad.att <- apply(attitude, 2, mad, constant = 1)
> att.centrada <- sweep(attitude, 2, mediana.att, FUN = "-")
> att.padronizada <- sweep(att.centrada, 2, mad.att, "/")
> head(att.padronizada)

rating complaints privileges learning raises critical advance
1 -3.2142857 -1.4 -3.07142857 -1.75 -0.33333333 2.9 0.6666667
2 -0.3571429 -0.1 -0.07142857 -0.25 -0.06666667 -0.9 1.0000000
3 0.7857143 0.5 2.35714286 1.25 1.66666667 1.7 1.1666667
4 -0.6428571 -0.2 -0.92857143 -0.95 -1.26666667 1.3 -1.0000000
5 2.2142857 1.3 0.64285714 0.95 1.00000000 1.1 1.0000000
6 -3.2142857 -1.0 -0.35714286 -1.25 -1.26666667 -5.7 -1.1666667
> round(head(scale(attitude)), 5)

rating complaints privileges learning raises critical advance
[1,] -1.77722 -1.17163 -1.89068 -1.47965 -0.34945 1.74164 0.20087
[2,] -0.13418 -0.19527 -0.17436 -0.20164 -0.15709 -0.17854 0.39526
[3,] 0.52303 0.25536 1.21505 1.07637 1.09324 1.13526 0.49245
[4,] -0.29849 -0.27038 -0.66474 -0.79805 -1.02271 0.93314 -0.77107
[5,] 1.34455 0.85619 0.23429 0.82077 0.61234 0.83208 0.39526
[6,] -1.77722 -0.87121 -0.33782 -1.05365 -1.02271 -2.60403 -0.86827

Estatística Computacional I - 2020 158

• Exemplo – iris3:
> # exemplo - iris
> is.array(iris3)
[1] TRUE
> dim(iris3)
[1] 50 4 3
> dimnames(iris3)
[[1]]
NULL
[[2]]
[1] "Sepal L." "Sepal W." "Petal L." "Petal W."
[[3]]
[1] "Setosa" "Versicolor" "Virginica"
> iris3[1:4, , 1]

Sepal L. Sepal W. Petal L. Petal W.
[1,] 5.1 3.5 1.4 0.2
[2,] 4.9 3.0 1.4 0.2
[3,] 4.7 3.2 1.3 0.2
[4,] 4.6 3.1 1.5 0.2
> iris3[1:4, , "Versicolor"]
Sepal L. Sepal W. Petal L. Petal W.
[1,] 7.0 3.2 4.7 1.4
[2,] 6.4 3.2 4.5 1.5
[3,] 6.9 3.1 4.9 1.5
[4,] 5.5 2.3 4.0 1.3

Estatística Computacional I - 2020 159

 Família apply – iris3:
> # comandos apply e sweep
> iris.medias <- apply(iris3, c(2, 3), mean)
> iris.medias

Setosa Versicolor Virginica
Sepal L. 5.006 5.936 6.588
Sepal W. 3.428 2.770 2.974
Petal L. 1.462 4.260 5.552
Petal W. 0.246 1.326 2.026
> iris3.centrada <- sweep(iris3, c(2,3), iris.medias, "-")
> iris3.centrada[1:2, ,]
, , Setosa

Sepal L. Sepal W. Petal L. Petal W.
[1,] 0.094 0.072 -0.062 -0.046
[2,] -0.106 -0.428 -0.062 -0.046
, , Versicolor

Sepal L. Sepal W. Petal L. Petal W.
[1,] 1.064 0.43 0.44 0.074
[2,] 0.464 0.43 0.24 0.174
, , Virginica

Sepal L. Sepal W. Petal L. Petal W.
[1,] -0.288 0.326 0.448 0.474
[2,] -0.788 -0.274 -0.452 -0.126

Estatística Computacional I - 2020 160

• Receitas globais de produtos:
> # exemplo - Receita por produto e continente
> # montagem do conjunto de dados
> produto <- c("A", "B", "C", "Total")
> continente <- c("Africa", "America", "Asia", "Australia", "Europa")
> valores <- c(0.4, 0.2, 0.4, 0.1, 0.3, 0.4, 0.3, 0.4, 0.5, 0.2,
+ 0.3, 0.2, 0.4, 0.3, 0.3, 0.1, 0.4, 0.4, 0.2, 0.2)
> (receitas <- matrix(valores, ncol = 5, dimnames = list(produto, continente)))

Africa America Asia Australia Europa
A 0.4 0.3 0.5 0.4 0.4
B 0.2 0.4 0.2 0.3 0.4
C 0.4 0.3 0.3 0.3 0.2
Total 0.1 0.4 0.2 0.1 0.2
> # receitas absolutas
> (receitas.global <- sweep(receitas[1:3,], 2, receitas[4,], "*"))
Africa America Asia Australia Europa
A 0.04 0.12 0.10 0.04 0.08
B 0.02 0.16 0.04 0.03 0.08
C 0.04 0.12 0.06 0.03 0.04
> sum(receitas.global)
[1] 1

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 26

– Gráfico das receitas

 E se você quiser utilizar os
valores da Europa como
baseline?

Estatística Computacional I - 2020
161

> # gráfico das receitas
> barplot(receitas.global*100, legend = rownames(receitas.global),
+ main = "Receita por produto e continente", ylab = "% Receita")

Referências

Bibliografia Recomendada

• ALBERT, J.; RIZZO, M. R by Example. Springer, 2012.
• CHRISTIAN, N. Basic Programming, Lecture Notes
• DALGAARD, P. Introductory statistics with R.

Springer, 2008.
• KLEIBER, C.; ZEILEIS, A. Applied econometrics with
R. Springer, 2008.

• GARDENER, M. Beginning R: The statistical
programming language. John Wiley & Sons, 2012.

286
Estatística Computacional I - 2020

