
Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 1

Estatística Computacional I

Lupércio França Bessegato
Dep. de Estatística/UFJF

Roteiro Geral
1. Programando em R
2. Preparação, limpeza e manipulação de dados
3. Gráficos em R
4. Tópicos especiais
5. Referências

2
Estatística Computacional I - 2020

Programando em R

Programação em R
• Estruturas de controle

√ Condicional
√ Loop

• Família Apply
√ Funções que evitam loops

• Cálculos vetorizados
• Funções
• Operações com matrizes

Estatística Computacional I - 2020
4

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 2

Estruturas de Controle

Comando if ... else
• Comando não é vetorizado

 Opera com vetores lógicos unitários
• Sintaxe:

if(cond=T){comando1}else{comando2}

 Evite inserir linhas entre }else
Estatística Computacional I - 2020

8

> i = 1
> if(i==0) {
+ print("É")
+ } else {
+ print("Não é")
+ }
[1] "Não é"

Estatística Computacional I - 2020
9

• Exemplo:
 Cálculo vetorizado de raiz quadrada

 Verificação de condição

> x <- rnorm(20)
> sqrt(x)
[1] 0.8534541 0.8079840 NaN NaN NaN NaN NaN
[8] 0.1262007 0.3678077 NaN NaN NaN 1.5423946 1.1010460
[15] 0.1482457 0.6212743 1.3166528 0.8976863 0.6757055 0.6311478
Warning message:
In sqrt(x) : NaNs produzidos
> y <- rexp(20)
> sqrt(x)
[1] 0.4186259 1.2099860 2.4738528 0.6503102 0.8785719 1.3200691 0.6887323
[8] 1.2808162 1.1824393 0.4662088 1.0204777 1.1666715 1.1432258 0.3892436
[15] 0.7657090 1.4997770 1.2001891 0.8584922 0.9249117 1.9980625

> if(is.numeric(x) & min(x) > 0) {sx <- sqrt(x)}else {
+ stop("x deve ser numérico e todos seus componentes positivos")}
Erro: x deve ser numérico e todos seus componentes positivos

Estatística Computacional I - 2020
10

• Comando if – fluxograma

• Comando if ... else – fluxograma

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 3

Comandos if ... else aninhados
• Executa bloco de códigos com mais de

duas alternativas
• Sintaxe:

if(cond1=T){
comando1
}else if(cond2=T){
comando2
}else if(cond3=T){
comando3
}else {
comando4
}

Estatística Computacional I - 2020
11

Estatística Computacional I - 2020
12

• Exemplo:
 Verificação de condição de número

> x <- 0
> if (x < 0) {
+ print("Número negativo")
+ } else if (x > 0) {
+ print("Número positivo")
+ } else
+ print("Zero")
[1] "Zero"

Estatística Computacional I - 2020
13

• Exemplo:
 Fatorial de um número

> num <- as.integer(readline(prompt="Entre um número: "))
Entre um número: 5
> fatorial <- 1
> # verifica se o número é positivo, negativo ou zero
> if(num < 0) {
+ print("Não é definido fatorial para número negativo")
+ } else if(num == 0) {
+ print("O fatorial de 0 é 1")
+ } else {
+ for(i in 1:num) {
+ fatorial = fatorial * i
+ }
+ print(paste("O fatorial de ", num ,"é",fatorial))
+ }
[1] "O fatorial de 5 é 120"
> factorial(5)
[1] 120

Estatística Computacional I - 2020
14

• Exemplo
 Função para decidir se número é par ou ímpar

Par ou ímpar - função
par.impar <- function(x){

verifica se o número é um decimal comparando x - round(x)
se for decimal retorna NA (par-ímpar não faz sentido para decimais)
if (abs(x - round(x)) > 1e-7){

return(NA)
}
se o número for divisível por 2 (resto da divisão zero) retorna "par"
caso contrário, retorna "ímpar"
if (x %% 2 == 0){

return(paste("O número", x, "é par"))
}else{

return(paste("O número", x, "é ímpar"))
}

}

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 4

Estatística Computacional I - 2020
15

 Testando a função par.impar

– Comandos if e if...else não são
vetorizados.

– Alternativa:
 Comando ifelse.

> par.impar(4); par.impar(5); par.impar(2.1)
[1] "O número 4 é par"
[1] "O número 5 é ímpar"
[1] NA
> > par.impar(1:5)
[1] "O número 1 é ímpar" "O número 2 é ímpar" "O número 3 é ímpar"
[4] "O número 4 é ímpar" "O número 5 é ímpar"
Warning messages:
1: In if (abs(x - round(x)) > 1e-07) { :
a condição tem comprimento > 1 e somente o primeiro elemento será usado

2: In if (x%%2 == 0) { :
a condição tem comprimento > 1 e somente o primeiro elemento será usado

Comando ifelse
• Comando opera vetorizado
• Sintaxe:

ifelse(teste,valor_T, valor_F)

Estatística Computacional I - 2020
16

> ifelse(c(TRUE, FALSE, FALSE, TRUE), 1, -1)
[1] 1 -1 -1 1

Estatística Computacional I - 2020
17

• Exemplos:
 Verificação vetorizada de condição

 Função par-ímpar
função par-ímpar - comando ifelse
par.impar.vet <- function(x){

se x for decimal, retorna NA, se não for, retorna ele mesmo (x)
x <- ifelse(abs(x - round(x)) > 1e-7, NA, x)
se x for divisivel por 2, retorna 'par', se não for, retorna impar

ifelse(x %% 2 == 0, "par", "impar")
}
> par.impar.vet(1:5)
[1] "impar" "par" "impar" "par" "impar"
> par.impar.vet(c(1:5, 1.1))
[1] "impar" "par" "impar" "par" "impar" NA

> xis <- 1:10
> ifelse(xis < 5 | xis > 8, xis, 0)
[1] 1 2 3 4 0 0 0 0 9 10

Estatística Computacional I - 2020
18

• Exemplo – iris
 Variáveis dummies:

– Indicadoras dos níveis de variável categórica

 Criação de dummies

> # indicadora setosa
> ind.setosa <- ifelse(iris$Species == "setosa", 1, 0)
> # indicadora versicolor
> ind.versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
> #tabela com os valores convertidos
> ind <- data.frame(iris$Species, ind.setosa, ind.versicolor)
> unique(ind)

iris.Species ind.setosa ind.versicolor
1 setosa 1 0
51 versicolor 0 1
101 virginica 0 0

> mat<-model.matrix(~iris$Species-1)
> mat<-as.data.frame(mat)
> names(mat)<-unique(iris$Species)
> unique(mat)
setosa versicolor virginica
1 1 0 0
51 0 1 0
101 0 0 1

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 5

Valores Especiais
• Cálculo com valores especiais

 Inf - infinito
 NaN – valor indefinido
 NA – dado ausente (missing value)

Estatística Computacional I - 2020
19

Estatística Computacional I - 2020
20

• Inf – infinito

 Verificação se valor é finito
•

 O R considera infinito tudo maior do que o
maior número que um computador pode ter
(na maioria das máquinas, isso é
aproximadamente 1,8 × 10308)

> 2/0
[1] Inf
> 4 - Inf
[1] -Inf

> is.finite(10^(305:310))
[1] TRUE TRUE TRUE TRUE FALSE FALSE
> 4 - Inf
[1] -Inf

Estatística Computacional I - 2020
21

• NaN – valor indeterminado

 Verificação se valor é indefinido

> Inf / Inf
[1] NaN
> Inf - Inf
[1] NaN
> Inf - 4
[1] NaN

> 0:4/0
[1] NaN Inf Inf Inf Inf
> is.nan(0:4/0)
[1] TRUE FALSE FALSE FALSE FALSE
> is.infinite(0:4/0)
[1] FALSE TRUE TRUE TRUE TRUE
> is.finite(c(0:4, NaN))
[1] TRUE TRUE TRUE TRUE TRUE FALSE

Estatística Computacional I - 2020
22

• NA – missing value

 Verificação de missing value

 Constantes que geram NA do tipo apropriado
– NA_integer_, NA_real_,
NA_complex_ e NA_ character_

> x <- NA
> x + 4
[1] NA
> log(x)
[1] NA
> mean(c(4, 8, NA))
[1] NA

> is.na(x)
[1] TRUE
> is.na(NaN - 4)
[1] TRUE

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 6

Estatística Computacional I - 2020
23

• Verificação de valores especiais
Função Inf – Inf NaN NA

is.finite() FALSE FALSE FALSE FALSE
is.infinite() TRUE TRUE FALSE FALSE
is.nan() FALSE FALSE TRUE FALSE
is.na() FALSE FALSE TRUE TRUE

Comandos usados em loops
• for
• while
• Família apply
• repeat

 break
 next

Estatística Computacional I - 2020
24

Comando for
• Loops são controlados por um vetor

 Em cada iteração, um valor no vetor é
atribuído a uma variável

 Geralmente, o número de iterações é
definido pela quantidade de valores do vetor

 Processamento se dá na mesma ordem
• Sintaxe:

for(variável em sequência) {
comandos

}

Estatística Computacional I - 2020
25

Estatística Computacional I - 2020
26

• Exemplos:
 Sequências de letras

 Cálculo de 10!
> # Cálculo de 10! usando loop for
> fat <- 1
> for(i in 1:10) {
+ fat <- fat*i
+ cat(i, fat, "\n")
+ }
> fat

> for(i in 1:5){
+ print(letters[i])
+ }
[1] "a"
[1] "b"
[1] "c"
> for(letra in letters[1:5]){
+ print(letra)
+ }
[1] "a"
[1] "b"
[1] "c"

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 7

Estatística Computacional I - 2020
27

• Comando for – fluxograma Comando seq_along
• Cria vetor de índices do objeto

Estatística Computacional I - 2020
28

> # seq_along
> set.seed(123456)
> vet <- rnorm(10)
> # inteiros de 1 a 10
> seq_along(vet)
[1] 1 2 3 4 5 6 7 8 9 10
> # alternativa
> 1:length(vet)
[1] 1 2 3 4 5 6 7 8 9 10

Estatística Computacional I - 2020
29

• Loop com vetor vazio
 Loop é executado (incorreto)

 Comando seq_along
– Loop não é executado

> # vetor vazio
> x <- numeric(0)
> # loop é executado (incorreto)
> 1:length(x)
[1] 1 0
> for(i in 1:length(x)) print(i)
[1] 1
[1] 0

> # loop não é executado (correto)
> for(i in seq_along(x)) print(i)

Estatística Computacional I - 2020
30

• Exemplo – Passeio aleatório
 A cada passo anda-se para a esquerda (+1) ou

para a direita (–1) com probabilidades iguais
> # Passeio aleatório
> set.seed(1)
> # quantidade de passos
> n <- 1000
> # vetor para armazenar o passeio aleatório
> passeio <- numeric(n)
> # primeiro passo
> passeio[1] <- sample(c(-1, 1), 1)
> # demais passos
> for(i in 2:n){
+ passeio[i] <- passeio[i - 1] + sample(c(-1, 1), 1)
+ }
> passeio
> range(passeio)
[1] -41 7
> plot(passeio, type = "l", xlab = "passo")

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 8

Estatística Computacional I - 2020
31

• Exemplo – passeio aleatório
 Solução vetorizada

> # Passeio aleatório
> set.seed(1)
> passeio2 <- cumsum(sample(c(-1, 1), n, replace = TRUE))
> plot(passeio, type = "l", xlab = "passo", main = "Passeio 2")
> # verificação de igualdade dos vetores
> all.equal(passeio, passeio2)
[1] TRUE

Estatística Computacional I - 2020
32

• Exemplo – média das colunas por linhas
 Conjunto de dados: iris

 Não é a maneira mais rápida para inserção
dos elementos do vetor

– (objeto “cresce” durante loop)
 Impacta substancialmente a performance do

programa

> # Cria objeto vazio
> media.linha <- NULL
> for(i in seq(along = iris[, 1])) {
+ # média por linhas do data frame
+ media.linha <- c(media.linha, mean(as.numeric(iris[i, 1:4])))
+ }
> head(media.linha)
[1] 2.550 2.375 2.350 2.350 2.550 2.850

Estatística Computacional I - 2020
33

• Pré-alocação de espaço:
 Sempre que possível, crie objeto para

armazenar resultados de cada iteração, antes
de iniciar o loop.

• Exemplo – Sequência de Fibonacci
 ଵܨ ൌ ଶܨ ;0 ൌ ଷܨ ;1 ൌ 1, ସܨ ൌ 2, ହܨ ൌ 3, …
 Regra:

– ଵܨ ൌ ଶܨ ;0 ൌ 1; … , ௜ܨ ൌ ௜ିଵܨ ൅ ܨ௜ିଶ, …

Estatística Computacional I - 2020
34

• Sequência de Fibonacci – uso de for
 Pré-alocação de espaço

> n <- 9
> # vetor para armazenamento dos n resultados
> fib <- numeric(n)
> # condições iniciais
> fib[1] <- 0
> fib[2] <- 1
> # regra para i > 2
> for(i in 3:n){
+ fib[i] <- fib[i - 1] + fib[i - 2]
+ }
> fib
[1] 0 1 1 2 3 5 8 13 21

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 9

Estatística Computacional I - 2020 35

 Função com pré-alocação

 Função sem pré-alocação
função do código sem pré-alocação de espaço
fib.sem <- function(n){

fib <- 0 # condições iniciais
fib <- c(fib, 1)
cálculo dos valores de 3 a n
for(i in 3:n){

fib <- c(fib, fib[i - 1] + fib[i - 2])
}
return(fib)

}

função do código com pré-alocação de espaço
fib <- function(n){

vetor para armazenamento dos resultados
fib <- numeric(n)
fib[1] <- 0 # condições iniciais
fib[2] <- 1
cálculo dos valores de 3 a n
for(i in 3:n){

fib[i] <- fib[i - 1] + fib[i - 2]
}
return(fib)

}

Estatística Computacional I - 2020
36

 Comando para verificar instalação de pacote
> # carregamento de pacote
> if(!require(microbenchmark)) install.packages("microbenchmark")
Carregando pacotes exigidos: microbenchmark
--- Please select a CRAN mirror for use in this session ---
tentando a URL
'https://mirrors.ebi.ac.uk/CRAN/bin/windows/contrib/3.3/microbenchmark_1.4-
4.zip'
Content type 'application/zip' length 63743 bytes (62 KB)
downloaded 62 KB
package ‘microbenchmark’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in

D:\Usuários\Lupércio\AppData\Local\Temp\RtmpOcAmBm\downloaded_packages

Estatística Computacional I - 2020
37

• Comparação das implementações:

 Função fib.sem chega a ser cerca de 10
vezes mais lenta do que a função fib.

 Quanto maior o número de simulações, maior
a queda no desempenho

 Também pode ser usado o comandosystem.time

> # comparação das implementações
> library(microbenchmark) # ou require(microbenchmark)
> set.seed(666)
> microbenchmark(fib(5000), fib.sem(5000))
Unit: milliseconds

expr min lq mean median uq max neval
fib(5000) 7.265189 7.628054 7.96130 7.934029 8.150326 10.84603 100

fib.sem(5000) 31.727421 32.887916 35.47633 33.839619 35.591521 54.40792 100

Comando while
• Sintaxe:

while(condição) {
comandos

}
• Loops são controlados pela condição

 Comandos do loop são executados se
resultado do teste(condição) for TRUE

 Loop é encerrado se resultado do teste forFALSE

Estatística Computacional I - 2020
38

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 10

Estatística Computacional I - 2020
39

• Exemplos:
 Sequência de números

 Cálculo de 10!
> i <- 10
> fat <- 1
> while(i > 1) {
+ fat <- i*fat
+ i <- i-1
+ cat(i, fat, "\n")
+ }
> fat

> i <- 1
> while (i < 6) {
+ print(i)
+ i = i+1
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Estatística Computacional I - 2020
40

• Comando while – fluxograma

Estatística Computacional I - 2020
41

• Sequência de Fibonacci – uso de while
quantidade de termos digitada pelo usuário
ntermos <- as.integer(readline(prompt="Quantos termos? "))
n1 <- 0 # termos iniciais
n2 <- 1
conta <- 2
if(ntermos <= 0) {# verifica se qte. de termos é válida

print("Entrar um número inteiro positivo")
} else {

if(ntermos == 1) {
print("Sequência de Fibonacci:")
print(n1)
} else {

print("Sequência de Fibonacci:")
print(n1)
print(n2)
while(conta < ntermos) {

n.esimo = n1 + n2
print(n.esimo)
atualização dos valores
n1 = n2
n2 = n.esimo
conta = conta + 1

} # fim while
} # fim 2o. else

} # fim do 1o. else
Estatística Computacional I - 2020

42

• Soma dos primeiros números naturais
 Sem fórmula – uso de while

 Com fórmula

quantidade de termos digitada pelo usuário
num <- as.integer(readline(prompt = "Entre um número: "))
if(num < 0) {

print("Entrar um número inteiro positivo")
} else {

soma <- 0
uso de loop while para iterar até zero
while(num > 0) {

soma = soma + num
num = num - 1
}
print(paste("A soma é", soma))

}

quantidade de termos digitada pelo usuário
num <- as.integer(readline(prompt = "Entre um número: "))
if(num < 0) {

print("Entrar um número inteiro positivo")
} else {

soma = (num * (num + 1)) / 2;
print(paste("A soma é", soma))

}

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 11

Instruções break e next
• Break

 Usado dentro do loop (while ou for) para
interromper e desviar o fluxo de controle
para fora do loop

 Em loops aninhados, desvia do loop interno
que estiver sendo executado

• Sintaxe:
if(condição) {

break
}

Estatística Computacional I - 2020
43

Estatística Computacional I - 2020
44

• Exemplos:
 Sequência de números

 Sequência aninhada
exemplo 2
for (i in 1:10){

for (j in 1:10){
for (k in 1:10){

cat(i, " ",j, " ", k, "\n")
if (k ==5) break

}
}

}

exemplo 1
x <- 1:5
for (valor in x) {

if (valor == 3){
break

}
print(valor)

}

Estatística Computacional I - 2020
45

• Instrução break – fluxograma

Estatística Computacional I - 2020
47

• next
 Permite pular a iteração atual de um loop,

mas não finaliza-o.
• Sintaxe:

if(condição) {
next

}
• Exemplo:

exemplo 3
> x <- 1: 4
> for (i in x) {
+ if (i == 2) next
+ print(i)
+ }

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 12

Estatística Computacional I - 2020
48

• Instrução next – fluxograma Comando repeat
• Loop é repetido até que seja especificado

um break
• Sintaxe:

repeat {
comandos

}
 Necessária uma segunda instrução para testar

se o loop deve ser interrompido
 CUIDADO:

– Não fazer isso resultará em um loop infinito

Estatística Computacional I - 2020
49

Estatística Computacional I - 2020
50

• Exemplos:
 Sequência de números

 Cálculo de 10!
i <- 1
fat <- 1
repeat {

fat <- i * fat
cat(i, fat, "\n")
i <- i + 1
if(i > 10) break

}
> fat

z <- 0
repeat {

z <- z + 1
print(z)
if(z > 100) break

}

Estatística Computacional I - 2020
51

• Comando repeat – fluxograma

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 13

Estatística Computacional I - 2020
52

• Instrução stop:
 Interrompe fluxo e imprime mensagem de

erro
• Exemplo:

> # instrução stop
> x <- 1:10
> z <- NULL
> for(i in seq(along = x)) {
+ if (x[i] < 5) {
+ z <- c(z, x[i]- 1)
+ cat(i, z, "\n")
+ } else {
+ stop("Valores devem ser < 5")
+ }
+ }
1 0
2 0 1
3 0 1 2
4 0 1 2 3
Erro: Valores devem ser < 5
> z

Estatística Computacional I - 2020
53

• Exemplo:
 Preenchimento parte inferior de matriz

Construção de matriz triangular inferior esquerda (zeros na parte
superior)
m <- 10; n <- 10
conta <- 0
matriz <- matrix(0, m, n)
for(linha in 1:m) {

for(coluna in 1:n){
if(linha == coluna){
break
} else {

calcula apenas fora da diagonal(i<>j)
matriz[linha, coluna] = linha * coluna
conta <- conta + 1

}
}
print(linha * coluna)

}
print(conta) # qte. células preenchidas
matriz

Estatística Computacional I - 2020
54

 Comando para preenchimento parte inferior
de matriz

> # comando para preenchimento de parte inferior de matriz
> valores.col <- c(2:10, seq(3*2, 10*2, by = 2), seq(4*3, 10*3, by = 3),
+ seq(5*4, 10*4, by = 4), seq(6*5, 10*5, by = 5),
+ seq(7*6, 10*6, by = 6), seq(8*7, 10*7, by = 7),
+ seq(9*8, 10*8, by = 8), 90)
> matriz <- matrix(0, m, n)
> matriz[lower.tri(matriz, diag = F)] <- valores.col
> matriz

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 2 0 0 0 0 0 0 0 0 0
[3,] 3 6 0 0 0 0 0 0 0 0
[4,] 4 8 12 0 0 0 0 0 0 0
[5,] 5 10 15 20 0 0 0 0 0 0
[6,] 6 12 18 24 30 0 0 0 0 0
[7,] 7 14 21 28 35 42 0 0 0 0
[8,] 8 16 24 32 40 48 56 0 0 0
[9,] 9 18 27 36 45 54 63 72 0 0
[10,] 10 20 30 40 50 60 70 80 90 0

Estatística Computacional I - 2020
55

• Exemplo:
 Preenchimento de tabuada

 Comando para preenchimento da matriz

tabuada
tabuada <- matrix(nrow = 30, ncol = 30)
linhas <- 1:dim(tabuada)[1]
colunas <- 1:dim(tabuada)[2]
rownames(tabuada) <- linhas
colnames(tabuada) <- colunas
for(i in linhas){

for(j in colunas){
tabuada[i, j] = i * j

}
}
tabuada

> outer(1:30, 1:30) $ ou 1:30 %o% 1:30
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 1 2 3 4 5 6 7 8 9 10 11 12 13
[2,] 2 4 6 8 10 12 14 16 18 20 22 24 26
[3,] 3 6 9 12 15 18 21 24 27 30 33 36 39
[4,] 4 8 12 16 20 24 28 32 36 40 44 48 52

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 14

Comando switch

• Permite selecionar uma das opções com
base no valor de uma expressão

• Sintaxe:
switch(expressão, opção_1,
opção_2, …)

 expressão deve ser uma string ou um
número, mas não um vetor

Estatística Computacional I - 2020
56

Estatística Computacional I - 2020
57

• Exemplos:
 Expressão é string

 Expressão é número
> # Exemplos - expressao = numero
> switch(2,"vermelho","verde","azul")
[1] "verde"
> switch(1,"vermelho","verde","azul")
[1] "vermelho"
> switch(3, 6 + 4, mean(1:8), rnorm(4))
[1] 1.0123142 -0.7082136 -0.1727563 0.4819342
> x <- switch(4,"vermelho","verde","azul")
> x
NULL

> # Exemplos - expressao = string
> switch("cor", "cor" = "vermelho", "shape" = "quadrado",
+ "tamanho" = 5)
[1] "vermelho"
> switch("tamanho", "cor" = "vermelho", "shape" = "quadrado",
+ "tamanho" = 5)
[1] 5

Estatística Computacional I - 2020
58

• Comando switch – fluxograma

 Se as opções falharem, será executado a
instrução default.

Estatística Computacional I - 2020
59

• Exemplo:
 Cálculo de medidas de tendência central

Cálculo de medidas de posição central
central <- function(y, medida){

switch(medida, media = mean(y), mediana = median(y),
geometrica = prod(y)^(1/length(y)),
aparada = mean(x, trim = 0.1) , "Inválida")

}
> set.seed(666)
> y <- rexp(100)
> central(y, "media")
[1] 0.8571762
> central(y, "mediana")
[1] 0.524719
> central(y, "geometrica")
[1] 0.4254744
> central(y, “harmonica")
[1] "Inválida"

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 15

Estatística Computacional I - 2020
60

• Exemplo – Envasamento de leite
 Volume da embalagem ~ Normal com média

1.000 ml e desvio padrão 4 ml
 Amostras aleatórias de tamanho 5, coletadas a

cada 30 min, num período de 8 horas
> # exemplo -leite
> set.seed(666)
> n <- 5; m <- 16
> amostras <- matrix(rnorm(n*m, 1000, 4), ncol = n, byrow = T)
> amostras <- round(amostras, 2)
> dim(amostras)
[1] 16 5
> rownames(amostras) <- paste(seq(0.5, 8, by = 0.5), "h")
> colnames(amostras) <- paste("Emb.#", 1:5)
> head(amostras)
Emb.# 1 Emb.# 2 Emb.# 3 Emb.# 4 Emb.# 5
0.5 h 1003.01 1008.06 998.58 1008.11 991.13
1 h 1003.03 994.78 996.79 992.83 999.83
1.5 h 1008.60 992.92 1003.46 993.12 1000.54

Estatística Computacional I - 2020
61

 Qual a média de cada amostra?
– Média das 5 embalagens a cada ½ h

 Funciona, mas é a maneira mais difícil

> # média por linha - manual (mais dificil)
> mean(amostras[1,]); mean(amostras[2,])
[1] 1001.778
[1] 997.452
> mean(amostras[3,]); mean(amostras[4,])
[1] 999.728
[1] 1001.064
> mean(amostras[5,]); mean(amostras[6,])
[1] 999.29
[1] 994.576
> mean(amostras[7,]); mean(amostras[8,])
[1] 1000.918
[1] 1001.158
> mean(amostras[9,]); mean(amostras[10,])
[1] 1001.69
[1] 999.75
> mean(amostras[11,]); mean(amostras[12,])
[1] 999.654
[1] 1000.14

Estatística Computacional I - 2020 62

 Vetor com as com as 16 médias amostrais
– Geração com loop

– Criação de função para cálculo das médias amostrais

> # média por linha - for
> tamanho <- nrow(amostras)
> medias.row <- numeric(tamanho)
> for (ii in seq_along(medias.row)) {
+ medias.row[ii] = mean(amostras[ii,])
+ }
> medias.row
[1] 1001.778 997.452 999.728 1001.064 999.290 994.576 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022

media por linha - função
medias.row.func <- function(matriz) {

tamanho <- nrow(matriz)
medias.row <- numeric(tamanho)
for (ii in seq_along(medias.row)) {

medias.row[ii] = mean(matriz[ii,])
}
return(medias.row)

}
> medias.row.func(amostras)
[1] 1001.778 997.452 999.728 1001.064 999.290 994.576 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022

Estatística Computacional I - 2020 63

 Geração de vetor com as medias por linha ou
por coluna

– Função
media por linha e coluna - função
medias.func <- function(matriz, rc = 2) {

rc: 1 = medias por linha, 2 = medias por coluna
if (rc == 1) {
tamanho <- nrow(matriz)
medias <- numeric(tamanho)
for (ii in seq_along(medias)) {

medias[ii] = mean(matriz[ii,])
}
} else {

tamanho <- ncol(matriz)
medias <- numeric(tamanho)
for (ii in seq_along(medias)) {

medias[ii] = mean(matriz[, ii])
}

}
return(medias)

}

Estatística Computacional I - 2020

Prof. Lupércio F. Bessegato - UFJF 16

Estatística Computacional I - 2020 64

 Geração de vetor com as medias por linha ou
por coluna

– Médias por linhas

– Médias por colunas

> medias.func(amostras, 1)
[1] 1001.778 997.452 999.728 1001.064 999.290 994.576 1000.918 1001.158
[9] 1001.690 999.750 999.654 1000.140 999.518 1001.412 999.364 996.022

> medias.func(amostras, 2)
[1] 999.9094 998.9438 998.6206 1000.4650 1000.0344

Referências

Bibliografia Recomendada

• ALBERT, J.; RIZZO, M. R by Example. Springer, 2012.
• CHRISTIAN, N. Basic Programming, Lecture Notes
• DALGAARD, P. Introductory statistics with R.

Springer, 2008.
• KLEIBER, C.; ZEILEIS, A. Applied econometrics with

R. Springer, 2008.
• GARDENER, M. Beginning R: The statistical

programming language. John Wiley & Sons, 2012.

285
Estatística Computacional I - 2020

